
IBM Tivoli Composite Application Manager for Transactions
V7.4.0.1
for AIX, Linux, Solaris, Windows, and z/OS

SDK Guide

SC14-7410-03

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 91.

This edition applies to V7.4 of IBM Tivoli Composite Application Manager for Transactions (product number
5724-S79) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2008, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this publication ix
Publications ix

Documentation library ix
Prerequisite publications x
Accessing terminology online. x
Accessing publications online. x
Ordering publications x

Accessibility xi
Tivoli technical training xi
Support information xi
Conventions used in this guide. xii

Typeface conventions xii
Operating system-dependent variables and paths xii

Chapter 1. Introduction 1

Chapter 2. Transaction Tracking API . . 3
Before you start 3
Preparing your environment 3
Getting started. 4

Introduction 4
Program requirements and include files 5
Compiling, linking, and executing with
Transaction Tracking API 6
Error handling. 7

How to build an event 9
Event types 10
Linking and stitching 12
Transaction Instance IDs 15
Context information 15
Blocking events 17
Platform-specific issues 18

High Level Language reference 19
Functions 19
C types and structures. 23

Java reference 28

High Level Assembler Reference 28
HLASM Macro: CYTADFV 28
HLASM Macro: CYTAINIT 30
HLASM Macro: CYTANV 31
HLASM Macro: CYTATOK 33
HLASM Macro: CYTATRAK. 33

.NET bindings for Transaction Tracking API . . . 37

Chapter 3. Generic TCP Decoder . . . 39
Web Response Time Module API 39

Module management 39
Data processing 41

Generic TCP Module 45
Generic TCP Decoder 48
Generic TCP Decoder rules 48
Example - decoding FTP protocol 57

Appendix A. Transport address format 65

Appendix B. Return codes 67

Appendix C. Samples 69

Appendix D. The kto_stitching file . . . 83

Appendix E. Transaction Collector
Context Mask 87

Appendix F. Accessibility 89

Notices 91
Trademarks 93
Privacy policy considerations 93

Glossary 95

Index 101

© Copyright IBM Corp. 2008, 2015 iii

iv IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Figures

1. Synchronous transaction 11
2. Contextual information in a transaction 16

3. Partially asynchronous transaction 18
4. Transaction Collector Configuration dialog box 88

© Copyright IBM Corp. 2008, 2015 v

vi IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Tables

1. Logging configuration environment variables 8
2. Event components 9
3. Event types 10
4. Rule matches with input "1 long day" . . . 51
5. Rule matches with input "the quick brown

fox" 51
6. Rule matches with input "someone said

hello" 51
7. simple_sentence rule matches with input

"someone said hello" 52

8. simple_sentence rule matches with input
"someone said hello" 52

9. simple_sentence rule matches with input
"someone said hello again" 53

10. Input "caterpillar" 53
11. Input "cat" 54
12. Input "caterpillar" 54
13. Samples in the SCYTSAMP library 69
14. Field matching 84

© Copyright IBM Corp. 2008, 2015 vii

viii IBM Tivoli Composite Application Manager for Transactions: SDK Guide

About this publication

This guide provides information about instrumenting applications to provide
tracking information for Transaction Tracking, and enabling the development of
third-party modules for decoding and processing network protocols by Web
Response Time.

Intended audience

This guide is for system administrators who enable applications to send events to
Transaction Tracking, and those who want to decode multiple protocols with Web
Response Time.

Use the information in the IBM Tivoli Composite Application Manager for
Transactions User's Guide and Administrator's Guide together with the IBM Tivoli
Monitoring User's Guide to monitor and manage the performance of your systems.

Publications
This section lists publications relevant to the use of the IBM Tivoli Composite
Application Manager for Transactions. It also describes how to access Tivoli®

publications online and how to order Tivoli publications.

Documentation library
The following documents are available in the IBM Tivoli Composite Application
Manager for Transactions library:
v IBM Tivoli Composite Application Manager for Transactions Administrator's Guide

This guide provides information about configuring elements of IBM Tivoli
Composite Application Manager for Transactions.

v IBM Tivoli Composite Application Manager for Transactions Installation and
Configuration Guide

This guide provides information about installing and configuring elements of
IBM Tivoli Composite Application Manager for Transactions.

v IBM Tivoli Composite Application Manager for Transactions Quick Start Guide

This guide provides a brief overview of IBM Tivoli Composite Application
Manager for Transactions.

v IBM Tivoli Composite Application Manager for Transactions Troubleshooting Guide

This guide provides information about using all elements of IBM Tivoli
Composite Application Manager for Transactions.

v IBM Tivoli Composite Application Manager for Transactions SDK Guide

This guide provides information about the Transaction Tracking API.
v IBM Tivoli Composite Application Manager for Transactions User's Guide

This guide provides information about the GUI for all elements of IBM Tivoli
Composite Application Manager for Transactions.

v IBM Tivoli Composite Application Manager for Transactions Installation and
Configuration Guide for z/OS

This guide provides information about using IBM Tivoli Composite Application
Manager for Transactions on z/OS.

© Copyright IBM Corp. 2008, 2015 ix

Prerequisite publications
To use the information in this guide effectively, you must know about IBM Tivoli
Monitoring products that you can obtain from the following documentation:
v IBM Tivoli Monitoring Administrator's Guide

v IBM Tivoli Monitoring Installation and Setup Guide

v IBM Tivoli Monitoring User's Guide

If you do not have IBM Tivoli Monitoring installed already you can do a basic IBM
Tivoli Monitoring installation using the IBM Tivoli Monitoring Quick Start Guide
as a guide.

See IBM Tivoli Monitoring Information Center for further information.

Accessing terminology online
The IBM® Terminology website consolidates the terminology from IBM product
libraries in one convenient location.

You can access the Terminology website at the following web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online
IBM posts publications for all products, as they become available and whenever
they are updated, to IBM Knowledge Center.

Access IBM Knowledge Center (http://www.ibm.com/support/knowledgecenter)
using a browser.

Find supporting information on the Application Performance Management
community (http://www.ibm.com/developerworks/servicemanagement/apm/
index.html) and connect, learn, and share with experts.

Ordering publications
You can order many Tivoli publications online at the following website:

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative:
1. Go to http://www.ibm.com/planetwide/.
2. In the alphabetic list, select the letter for your country and then click the name

of your country. A list of numbers for your local representatives is displayed.

x IBM Tivoli Composite Application Manager for Transactions: SDK Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?topic=%2Fcom.ibm.itm.doc_6.2.3%2Fitm623_qsg_en.htm
http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Monitoring
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/support/knowledgecenter
http://www.ibm.com/developerworks/servicemanagement/apm/index.html
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/planetwide/

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products. With this product, you can use
assistive technologies to hear and navigate the interface. You can also use the
keyboard instead of the mouse to operate most features of the graphical user
interface.

For additional information, see Appendix F, “Accessibility,” on page 89.

Tivoli technical training
For information about Tivoli technical training, see the following IBM Tivoli
Education website:

http://www.ibm.com/software/tivoli/education/

Support information
If you have a problem with your IBM software, you want to resolve it quickly.

Online
Access the Tivoli Software Support site at http://www.ibm.com/software/
sysmgmt/products/support/index.html?ibmprd=tivman. Access the IBM
Software Support site at http://www.ibm.com/software/support/
probsub.html .

IBM Support Assistant
The IBM Support Assistant is a free local software serviceability workbench
that helps you resolve questions and problems with IBM software
products. The Support Assistant provides quick access to support-related
information and serviceability tools for problem determination. The IBM
Support Assistant provides the following tools to help you collect the
required information:
v Use the IBM Support Assistant Lite program to deploy the IBM Support

Assistant data collection tool. This tool collects diagnostic files for your
product.

Tip: When you install the IBM Support Assistant data collection tool on
64-bit systems, use a 32-bit Java Runtime Environment to ensure that
data collection functions as expected.

v Use the Log Analyzer tool to combine log files from multiple products in
to a single view and simplify searches for information about known
problems.

For information about installing the IBM Support Assistant software, see
http://www.ibm.com/software/support/isa.

Troubleshooting Guide
For more information about resolving problems, see the IBM Tivoli
Composite Application Manager for Transactions Troubleshooting Guide.

About this publication xi

http://www.ibm.com/software/tivoli/education/
http://www-01.ibm.com/software/sysmgmt/products/support/index.html?ibmprd=tivman
http://www-01.ibm.com/software/sysmgmt/products/support/index.html?ibmprd=tivman
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa

Conventions used in this guide
This guide uses several conventions for operating system-dependent commands
and paths, special terms, actions, and user interface controls.

Typeface conventions
This guide uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip, and Operating system considerations).

v Keywords and parameters in text

Italic

v Words defined in text
v Emphasis of words
v New terms in text (except in a definition list)
v Variables and values you must provide

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
This guide uses the UNIX system convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables. Replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Variables

The following variables are used in this documentation:

$CANDLE_HOME
The default IBM Tivoli Monitoring installation directory. On UNIX systems,
the default directory is /opt/IBM/ITM.

xii IBM Tivoli Composite Application Manager for Transactions: SDK Guide

%CANDLE_HOME%
The default IBM Tivoli Monitoring installation directory. On Windows
systems, the default directory is C:\IBM\ITM.

$ALLUSERSPROFILE
On UNIX systems, /usr

%ALLUSERSPROFILE%
On Windows 7 and 2008, the default directory is C:\ProgramData.

About this publication xiii

xiv IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Chapter 1. Introduction

ITCAM for Transactions provides a default set of tracking and decoding
information. You can use the Transaction Tracking API or the Web Response Time
Module API to extend the capability of ITCAM for Transactions.

Transaction Tracking is a solution for tracking transactions across applications and
networks. It provides an upgrade path from Response Time Tracking, and
consolidates domain-specific tracking technologies. Transaction Tracking tracks
applications by accepting information from applications, monitoring software and
other sources that specify a point in the life of an application. Each piece of
information is an event. Transaction Tracking Data collectors such as MQ Tracking
automatically send these events to Transaction Tracking.

The Transaction Tracking Application Programming Interface (Transaction Tracking
API), provides developers with a means of sending their own events and
providing tracking information to Transaction Tracking. In this way, developers can
enhance tracking beyond that provided by Transactions Data Collectors.
v Use the Transaction Tracking API to construct events and send those events to

ITCAM for Transactions for processing.
v Use the Web Response Time Module API to develop third-party modules for

decoding and processing network protocols.

© Copyright IBM Corp. 2008, 2015 1

2 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Chapter 2. Transaction Tracking API

Before you start
Transaction Tracking API is supported on a range of operating systems and
architectures. It supports a number of programming languages.

Platform support

Follow these steps for information about the supported operating systems and
hardware architectures on which you can use Transaction Tracking API:
1. Link to the required ITCAM for Transactions version from ITCAM for

Transactions on Documentation Central.
2. In the navigation pane, select Composite Application Manager for

Transactions > Prerequisites.
3. In the System requirements and prerequisites page, select Transaction Tracking

from the Supported operating systems list.

Supported programming languages

The Transaction Tracking API supports the following programming languages:
v C
v C++
v Enterprise COBOL (z/OS® only)
v Enterprise PL/I (z/OS only)
v IBM High Level Assembler (HLASM - z/OS only)
v Java™ 1.4 and 1.5

The following program environments are supported on z/OS:
v C, C++ and Java applications running in 64 bit mode on z/OS
v C and C++ XPLINK and non-XPLINK programs on z/OS
v C and C++ programs statically and dynamically linking Transaction Tracking

API
v COBOL and PL/I programs statically linking Transaction Tracking API

Preparing your environment
The way in which you prepare your environment is dependent on whether it is a
distributed or z/OS environment.

Distributed environments

Depending on the target platform, the Transaction Tracking API Software
Development Kit (Transaction Tracking API SDK) is packaged as a single .zip or tar
archive. This archive contains everything required to instrument an application.
However, it does not include any other related components, such as the
Transaction Collector. The Transaction Tracking API SDK is located in ITM
installation/platform/tu/tusupport. You may unpack the Transaction Tracking
API SDK anywhere on your system.

© Copyright IBM Corp. 2008, 2015 3

http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Composite+Application+Manager+for+Transactions
http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Composite+Application+Manager+for+Transactions

The files contained in the Transaction Tracking API SDK are:
include/

ttapi.h
lib/

ttapi4j.jar
ttapi.lib, ttapi.dll, pthread.dll (Windows)
libttapi.so (UNIX - suffixes vary by platform)
kbb.dll on Windows
libkbb.so on UNIX

z/OS environments

For z/OS systems, the Transaction Tracking API SDK is installed as part of the
Transactions Base installation. However:
v C programmers on UNIX Systems Services (USS) may wish to copy the

SCYTSAMP member CYTAPI to a USS directory of their choice, renaming it to
cytapi.h. This file holds all C and C++ includes necessary to use the Transaction
Tracking API.

v Java programmers must ensure that the Transactions JAR files are in the Java
classpath, and external links to the Transactions JNI modules are in the Java
libpath. See the IBM Tivoli Composite Application Manager for Transactions
Installation and Configuration Guide for more information.

Getting started
Use this information to help you create and send events.

Introduction
To send a transactions event, you must complete these steps.
1. Initialize Transaction Tracking API using the init function.
2. Construct the event.
3. Send the event using the track function.
4. Shut down the Transaction Tracking API using the shutdown function.

Initialize Transaction Tracking API

The init function only needs to be called once per process. This function sets up
the Transaction Tracking API environment, and populates the Configuration Block
with information required by all other Transaction Tracking API functions. The
Configuration Block must not be changed after init has been called. The init
command must be called before any other Transaction Tracking API function.
However, TT_check_version should be called before the init command, otherwise
it has no effect.

Callers of the init function must allocate an area for the Configuration Block, and
populate the servername field – the destination where events are to be sent. This
must be in the format specified in Appendix A, “Transport address format,” on
page 65.

Java callers use the ServerFactory.getServer class, however this call performs the
same functions as the init function. Non-z/OS C and C++ users may choose to
use the check_version function to check the header versions.

4 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Create the event

An event block must be allocated and completed by the caller. “How to build an
event” on page 9 describes the event format in detail, and shows how to code an
event block.

Java users construct events by calling the createEvent method of a ttapi4j.Server
object.

Send the event

The track function (native) and ttapi4j.Server.track method (Java) are used to
send the event. Note that calling track does not modify the contents of the event
constructed. Users calling track multiple times do not have to recreate the entire
event, but can reuse the existing event – replacing only the individual fields
required.

Shut down the Transaction Tracking API

The Transaction Tracking API should be shut down when it is no longer needed to
track events.

Java users should invoke the close method of the Server object.

Note: The shutdown function is not required for z/OS.

Program requirements and include files
Before using the Transaction Tracking API, you must first provide standard
preamble statements and include files in your code.

C/C++

You must include the Transaction Tracking API include file.

For example, for distributed systems:
#include <ttapi.h>

For z/OS users:
#include <cytapi.h>

COBOL

You must copy the CYTABCON constants copybook into the Data-Division of your
Working Storage Section. For example:
DATA DIVISION.

Working-Storage Section.
COPY CYTABCON.

PL/I

You must include the supplied event block structure. For example:
%include CYTAPEVT;

Chapter 2. Transaction Tracking API 5

Compiling, linking, and executing with Transaction Tracking
API

References for compiling, linking, and executing with Transaction Tracking API.

Compiling

C/C++

To compile C or C++ programs against the Transaction Tracking API library, add
the include directory found in the Transaction Tracking API SDK or SCYTSAMP
dataset to the compiler's preprocessor include path.

For example, if compiling with Microsoft Visual C 7.1 and the SDK is installed in
C:\TTAPI:
cl /I C:\TTAPI\include <custom-flags> /c <source-filename>

Java

To compile a Java program, ensure that the Transactions cytapi4j.jar (z/OS) or
ttapi4j.jar (non-z/OS platforms) JAR file is in the Java classpath. This can be
achieved by adding the file's absolute path to the CLASSPATH environment variable,
or by specifying it on the command line by using the -classpath flag.

COBOL and PL/I

To compile COBOL or PL/I programs, ensure the SCYTSAMP library is in the
compiler's SYSLIB DD concatenation.

High Level Assembler

To assemble HLASM programs, ensure the SCYTSAMP library is in the assembler's
SYSLIB DD concatenation.

Linking on distributed platforms

To link the resultant objects into an application, link against the libttapi library
provided with the Transaction Tracking API SDK. For example, if linking with
Microsoft Visual C 7.1 and the SDK is installed in C:\TTAPI:
link /libpath: C:\TTAPI\lib <custom-flags> <object-files> ttapi.lib

Binding on z/OS systems

The Transaction Tracking API programs are stored as DLLs in the SCYTLOAD
library. When binding programs with Transaction Tracking API on z/OS:
v If a C or C++ program is dynamically calling Transaction Tracking API:

– If compiling in batch, include the SCYTSAMP member CYTASIDE in the
SYSLIN DD.

– If compiling in UNIX Systems Services, copy the SCYTSAMP member
CYTASIDE to an HFS directory, renaming it to cytaside.x. Include cytaside.x
when binding your program. For example: c89 –W’l,dll’ pgm1.o cytaside.x

v Otherwise ensure the SCYTLOAD library is included in the binder search path.
For example, adding SCYTLOAD to the binder SYSLIB DD if binding in batch.

6 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Running with Transaction Tracking API

C/C++

If running on distributed (non-z/OS) platforms, ensure the lib directory of the
Transaction Tracking API SDK is included in the runtime library search path.

For example, on Linux you must modify the LD_LIBRARY_PATH environment
variable to include the directory.

If running on z/OS, ensure the SCYTLOAD library is in the z/OS linklist
concatenation, and that external links to the Transactions JNI modules are defined
in the Java libpath. See IBM Tivoli Composite Application Manager for Transactions
Installation and Configuration Guide for more information.

COBOL and PL/I

If running on z/OS, ensure the SCYTLOAD library is in the z/OS linklist
concatenation.

Java

If running on distributed (non-z/OS) platforms, ensure the lib directory of the
Transaction Tracking API SDK is included in the runtime library search path.

For example, on Linux you must modify the LD_LIBRARY_PATH environment
variable to include the directory.

If running on z/OS, ensure the SCYTLOAD library is in the z/OS linklist
concatenation.

In both cases, ensure the cytapi4j.jar (z/OS) or ttapi4j.jar (non-z/OS) JAR files
are in the Java classpath.

Error handling
Transaction Tracking API functions that fail return an error code. Check the error
codes to determine whether the Transaction Tracking API function succeeded.

If a function succeeds it returns TT_SUCCESS (zero). If it fails, it returns a non-zero
error code, as described in Appendix B, “Return codes,” on page 67. Additionally,
Transaction Tracking API provides logging facilities to further isolate the problem.
For normal operation, this logging is disabled.

Invalid events

The track function validates all events and returns a code, as described in
Appendix B, “Return codes,” on page 67, which specifies in detail the invalid field
or value.

Undefined behavior

There are certain error conditions that the Transaction Tracking API cannot detect.
For example:
v Passing one Configuration Block to init, and a different block to other

functions.

Chapter 2. Transaction Tracking API 7

v Modifying the Configuration Block after init has been called.
v Incorrect length value specified.
v Configuration Block, event, or name/value pairs not initialized to nulls before

use.

In these cases, Transaction Tracking API processing is unpredictable.

Error logging and debugging
In addition to returning error codes from Transaction Tracking API functions,
Transaction Tracking API logs error and debug messages at significant points in the
process of initializing, shutting down, sending events to a Transaction Collector,
and various states in between. In general, this logging will not be of interest - it
will usually be turned on to provide support professionals with enough
information to help isolate an error or misuse of the API.

On platforms other than z/OS, Transaction Tracking API uses the IBM Tivoli
Monitoring standard RAS1 logging. On z/OS, log information is written to standard
output. You can control the amount of logging produced by the RAS1 logger by
configuring the environment variables listed in Table 1.

Table 1. Logging configuration environment variables

Environment variable Description

KBB_RAS1=ALL Enable logging of all messages. Generally this setting
provides too much information.

KBB_RAS1=ERROR Enable logging of error messages only. This provides a
restricted set of messages. Set additional logging to
provide the exact information you require.

For example, set the following to see the return code
from TT_Track: KBB_RAS1=ERROR (COMP:transport
ERROR,FLOW,DETAIL) (COMP:ttapi ERROR,FLOW,DETAIL)

KBB_RAS1= Disable all message logging. This is the default.

KBB_RAS1_LOG= Log to standard output.

KBB_RAS1_LOG=log file path
name

Set the log file name and other parameters. See the
format example below.

KBB_VARPREFIX=% Set the prefix for variables specified in KBB_RAS1_LOG.

CYTA_LOGGER=ttapi Enable Transaction Tracking API logging for Java
programs running on UNIX and Linux systems.

KBB_RAS1_LOG has the following format:
KBB_RAS1_LOG=filename [INVENTORY=inventory_filename]

[COUNT=count]
[LIMIT=limit]
[PRESERVE=preserve]
[MAXFILES=maxfiles]

The settings for KBB_RAS1_LOG are:

count Maximum number of log files to create in one invocation of the
application.

inventory_filename
A file in which to record the history of log files across invocations of the
application.

8 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

limit Maximum size per log file.

maxfiles
Maximum number of log files to create in any number of invocations of
the application. This value takes effect only when inventory_filename is
specified.

preserve
Number of log files to preserve when log files wrap over count.

Logging to 64-bit Windows systems

To enable logging to 64-bit Windows systems, use the stdout logger, which is an
alternative to the RAS1 logger. To enable logging, set the following environment
variable:
CYTA_LOGGER=path-to-ttapi.dll:stdout

For example, CYTA_LOGGER=C:\IBM\ITM\tmaitm6\tusupport\64\ttapi.dll:stdout.
All logging is sent to the standard output of the process.

To log to a file, also set the following environment variable:
CYTA_LOGFILE=path-to-output

For example, CYTA_LOGFILE=C:\temp\mylog.log.

How to build an event
Instrumenting an application requires you to create events that indicate the flow of
a transaction.

The Transaction Tracking API comes in multiple forms:
v High Level Language (HLL) package – for C, C++, COBOL and PL/I programs.

See “C types and structures” on page 23 for information specific to
instrumenting C/C++ applications.

v TTAPI4J – wrapper for Java applications.
See “Java reference” on page 28 for information specific to instrumenting Java
applications.

v z/OS macros for HLASM callers.
See “High Level Assembler Reference” on page 28.

Detailed information on each of these forms is given in the appropriate reference
chapter. Complete examples for all languages are provided in the Appendixes.

Transaction Tracking API events contain the major components described in
Table 2.

Table 2. Event components

Component Description

Event type The type of the event, for example outbound or inbound.

Instance ID Information specific to the event's enclosing transaction
instance.

Horizontal ID Information used to correlate events, where the events occur
in separate processes, potentially on separate machines.

Chapter 2. Transaction Tracking API 9

Table 2. Event components (continued)

Component Description

Vertical ID Information used to correlate events, where the events occur
in the same process.

Horizontal context Information used to aggregate events across processes.

Vertical context Information used to aggregate events within a process.

Blocked Status An attribute that indicates whether or not an event is related
to a synchronous interaction in its transaction.

These components are described in detail in the following sections.

Event types
Every event sent by Transaction Tracking API has an associated type that is used in
event correlation.

The event types are described in Table 3.

Table 3. Event types

Event type Description

STARTED The beginning of a transaction. No events in a transaction may
come before STARTED. The STARTED event type is used as the
lower bound by the correlation system when searching for
related events.

FINISHED The end of a transaction. No events in a transaction may come
after FINISHED. The FINISHED event type is used as the upper
bound by the correlation system when searching for related
events.

INBOUND A message has been received. These events are typically used to
correlate cross-process interactions.

OUTBOUND A message has been sent. These events are typically used to
correlate cross-process interactions.

HERE Usually indicates the blocking or unblocking of an asynchronous
transaction. May also be used in situations where there is not
enough context to determine whether an event is the result of an
outgoing or incoming message.

STARTED_INBOUND Combination of STARTED and INBOUND events used to reduce
the number of events produced. STARTED_INBOUND events
are used both as a STARTED lower bound, and for INBOUND
correlation.

OUTBOUND_FINISHED Combination of OUTBOUND and FINISHED events used to
reduce the number of events produced. OUTBOUND_FINISHED
events are used both as a FINISHED upper bound, and for
OUTBOUND correlation.

INBOUND_FINISHED Combination of INBOUND and FINISHED events used to
reduce the number of events produced. INBOUND_FINISHED
events are used both as a FINISHED upper bound, and for
INBOUND correlation.

COMMIT Reserved for use by the WebSphere MQ data collector.

ROLLBACK Reserved for use by the WebSphere MQ data collector.

The event is set in the event block Type field. For example:

10 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Java
event.setType(Event.Type.OUTBOUND);

C/C++
event.type = TT_OUTBOUND_EVENT;

COBOL
MOVE CYTA-STARTED TO CYTA-E-TYPE.

PL/I
cytaetyp = cytaesta;

HLASM
CYTATRAK STARTED,

Event type examples
The Transaction Tracking API can be used to track both synchronous and
asynchronous transactions.

Synchronous transactions

The simple example shown in Figure 1 demonstrates event type usage in a client
application making a synchronous request to a server application.

The dashed line in Figure 1 illustrates the flow of the transaction from start to
finish.

Transactions typically start with a STARTED event, unless the transaction is known
to have started as the result of an inbound message, in which case a
STARTED_INBOUND event type is used. In the example, the overall transaction begins
with a STARTED event, and the subtransaction in the server process begins with a
STARTED_INBOUND.

Transactions typically terminate with an INBOUND_FINISHED or OUTBOUND_FINISHED
event, because a transaction usually terminates upon receipt of a reply to a prior
request. If the transaction terminates because of some other condition, for example
if the request from the client to the server times out, indicate this with a FINISHED
event.

Figure 1. Synchronous transaction

Chapter 2. Transaction Tracking API 11

Asynchronous transactions

See “Blocking events” on page 17 for an example of event-type usage in
asynchronous transactions.

Linking and stitching
One of the most important elements of the Transaction Tracking API event is the
association ID, which is composed of linking and stitching IDs. Linking and
stitching IDs are used to determine the relationships between events.

For example, if an outbound and an inbound event are related to a particular
interprocess interaction, then they must both contain some identical information so
that they can be matched against each other. Each event may have either or both
horizontal and vertical association IDs. Typically, the horizontal ID correlates events
across processes, and the vertical ID correlate events within a single process.

Note: The term technology domain is introduced in this section. This term refers to a
(potential) Transaction Tracking API event source, such as ARM, MQ, ITCAM for
SOA, or a custom application. Each domain is expected to provide enough
information to correlate Transaction Tracking API events.

Linking and stitching IDs

Linking IDs identify interactions within a single technology domain. For example,
where a domain, such as ARM, tracks transactions by passing tokens along, that
token, or some part of it, might be used as the linking ID. The linking ID will not
match any other domain, but it allows events within the ARM domain to be
correlated. You must provide Transaction Tracking API with one and only one
linking ID.

Stitching IDs identify interactions between technology domains, both within and
across processes. In-process interactions occur only if there are two sources of
tracking information within that process. If a process lies at the edge of two
technology domains, for example ARM and MQ, then it is possible that the process
will produce events for both domains.

Linking and stitching IDs are opaque to the Transaction Tracking API; they carry
no special meaning, and have no particular formatting constraints beyond their
size limitations. The event correlation system performs a simple byte-array
comparison for equality.

Linking and stitching IDs must be globally unique for each interaction, from the
first STARTED event to the last FINISHED event.

Tip: You can improve the uniqueness of linking IDs in custom applications by
adding a prefix or suffix to all linking IDs generated by your application. In doing
this, you will achieve the same effect as setting the caller type to some value
unique to your application, provided that the prefix or suffix you choose is not
used by another application.

Stitching IDs

While Transaction Tracking API provides an interface for providing arbitrary
stitching IDs, they are useless if there is no commonality between each technology
domain. Horizontal stitching IDs generally must be provided on a pair-by-pair

12 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

basis - that is for each pair of technology domains. The developers instrumenting
these domains will have to communicate to determine common stitching IDs.
Transaction Tracking API events may contain multiple stitching IDs. For any two
events, if a stitching ID of one event is equal to the stitching ID with the same
name of the other event, then some interaction is assumed to have occurred
between the two events. The Transaction Collector kto_stitching.xml file defines
how this stitching occurs. See Appendix D, “The kto_stitching file,” on page 83 for
further information on this file.

Vertical stitching can generally be accomplished by using the thread ID of the
thread in which the transaction event occurred. This enables the correlation system
to correlate events from one transaction that are interleaved with events from
another transaction in another thread. This depends on the structure of the
instrumented application, and on a single thread being used to service a
transaction.

Link types

All links must have a type (CALL TYPE ID) that is an integer value and can be
any number 0 to 255. Events have a default caller type of ANY - this caller type
will only be matched against other events with the ANY caller type, and may be
used instead of a domain-specific caller type. However, use values from the range
200-255 rather than ANY.

Currently defined values are:
v 0 ANY
v 1 GPS
v 2 ARM
v 3 WSA
v 4 CICS Transaction Gateway
v 5 Websphere MQ
v 6 SOA
v 7 Web Resource
v 8 CICS
v 9 IMS
v 10 WebSphere Message Broker
v 11 DB2
v 12 Reserved for IBM use
v 13 IMS Connect
v 14 Tuxedo
v 15 Optim Performance Manager
v 16 .NET
v 17 Citrix and Terminal servers
v 18 Web Response Monitors
v 19-20 Reserved for IBM use
v 21 SOAP
v 22 IIOP
v 23 Java Message Service
v 24-199 Reserved for IBM use
v 200-255 Available to users

Chapter 2. Transaction Tracking API 13

Examples

Vertical linking

This example uses C/C++ to link events using the current thread ID:
pthread_t current_thread;
char thread_id[sizeof(pthread_t)];
struct tt_event_t event;
/* Set the event’s vertical link ID to the current thread ID. */
current_thread = pthread_self();
memcpy(thread_id, ¤t_thread, sizeof(pthread_t));
event.vertical_id.link_id = thread_id;
event.vertical_id.caller_type = TT_ARM_CALLER;
event.vertical_id.link_id_size = sizeof(pthread_t);

Horizontal linking

This example uses C/C++ to link events using a token embedded in a message
sent by the instrumented application. Because both applications are members of
the same technology domain they are capable of communicating this way. That is,
the server knows how to decode the message so that it can extract the value of the
horizontal link ID:

/* Create the token that will be sent with the message */
uint16_t token_size = 0;
char *token = create_token(&token_size);
/* Set the event’s horizontal link ID to the message’s token value. */
event.horizontal_id.link_id = token;
event.horizontal_id.caller_type = TT_IMS_CALLER;
event.horizontal_id.link_id_size = token_size;

Stitching

Using horizontal and vertical stitching IDs is similar to using horizontal and
vertical linking IDs. Below are some simple examples of how to configure stitching
IDs.

Java:
Event event = server.createEvent();
event.getHorizontalID().getStitchingIDs().put("name", "value");
event.getVerticalID().getStitchingIDs().put("name", "value");

C/C++:
tt_event_t event;
tt_values_list_t horizontal_stitching_ids;
tt_values_list_t vertical_stitching_ids;
horizontal_stitching_ids.name = "name";
horizontal_stitching_ids.value = "value";
horizontal_stitching_ids.size = sizeof("name") - 1;
horizontal_stitching_ids.next = 0;
event.horizontal_id.stitch_ids = &horizontal_stitching_ids;
vertical_stitching_ids.name = "name";
vertical_stitching_ids.value = "value";
vertical_stitching_ids.size = sizeof("name") - 1;
vertical_stitching_ids.next = 0;
event.vertical_id.stitch_ids = &vertical_stitching_ids;

14 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Transaction Instance IDs
Transaction Tracking API events have an optional instance ID.

The instance ID contains either or both of the following fields:
v Transaction ID
v Transaction Data

The transaction ID exists purely for assisting the event correlation system; it is an
identifier common to all (or a subset of) events belonging to an instance of a
transaction. Normally, the correlation system will have to iteratively build up a
transaction by following each linking and stitching ID. If a transaction ID is
specified, the correlation system can request all events with that ID up-front, thus
reducing the time to completion.

Events may also contain transaction data. Transaction data is data particular to an
instance of a transaction. It is only used for labeling in reports and graphs of
transactions. Only data that is particular to a instance of the transaction is
included, that is, data that is not aggregated, and is not used for linking and
stitching. The data is presented when the transaction instance is visualized. For
example, a web application might report the parameters of an HTTP request in
instance data, and the server and page part of the request in the aggregated data
(context).

Example: Java
Event event = server.createEvent();
event.getInstanceID().setTransactionID("SomeUniqueTransaction");
event.getInstanceID().getTransactionData.put("name", "value");

Example: C/C++
tt_event_t event;
tt_values_list_t transaction_data;

transaction_data.name = "name";
transaction_data.value = "value";
transaction_data.size = sizeof("value") - 1;
transaction_data.next = 0;

event.instance_id.transaction_id = "SomeUniqueTransaction";
event.instance_id.size = sizeof("SomeUniqueTransaction") - 1;
event.instance_id.transaction_data = &transaction_data;

Context information
A typical environment monitored by Transaction Tracking produces large amounts
of tracking data. For this reason, Transaction Tracking aggregates the tracking data.
Timings and other statistics are aggregated by their common contextual
information.

Contextual information is also used for labeling nodes in the visualization of a
transaction, and for linking to domain-specific IBM Tivoli Monitoring applications.

Contextual information is information related to the circumstances in which the
transaction event occurred. For example, the name or address of the host on which
the event occurred, or the host that caused the event to occur. Similarly, the name
of the application from which the transaction originated or the application that is
presently processing the transaction are also contextual information. Such
information allows users to aggregate response times between hosts, between

Chapter 2. Transaction Tracking API 15

applications, and so on. It is not, however, instance data, that is, it is not specific to
one event, but typically specific to a flow of events.

Contextual information is stored in two fields: the vertical context, and horizontal
context. Vertical context is intended to contain information about the transaction,
application or host where the event occurred. Horizontal context is intended to
contain information about the message or interaction between two applications or
hosts. For example, the vertical context might contain the host name of the
machine on which an event occurred, and the horizontal context might contain the
type of HTTP request that caused the event to occur.

For a transaction moving through a physical topology, an event's vertical context
(for example, the hostname, physical location, application name) is used to label
the individual nodes (that is, the hosts) in the graph. An event's horizontal context
(for example, the query type, message queue name) is used to label the edges
between those nodes.

Similarly to creating stitching IDs, providing contextual information requires
cooperation between the programmers instrumenting the various applications. In
particular, the names of the items of information should match where transactions
should be grouped by that information. Names are case-sensitive, and aggregation
performs a binary equality comparison on them.

Transaction Tracking workspaces also depend on names to provide a further
hierarchy of information. The following four Vertical Contexts must be set at least
once for every linked set of events. For example, set the Vertical Contexts in the
STARTED event.

ServerName
The server name or address of the machine on which the event occurred.
For example, win001.

For z/OS users, this must be the Sysplex name and the z/OS host name
(SMF id), separated by a forward slash (/). For example, SYSPLEXQ/MVS1.

Figure 2. Contextual information in a transaction

16 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

ComponentName
The name of the component in which the event occurred, For example
CICS®, Websphere Application Server, MQ: MQ.

ApplicationName
The name of the application in which the event occurred. For example, the
CICS region name or the MQ Queue Manager name: CICS001.

TransactionName
A common identifier for a group of transactions. If this is known by all
participants in the transaction, you can easily view aggregate information
for all events occurring within transactions of that group. For example,
TXN1.

Note: Values for Vertical Contexts can be updated by subsequent vertically linked
events. For example, a value for TransactionName could be set in the STARTED
event and then be overwritten in an INBOUND event.

The horizontal context distinguishes between interactions at an aggregate level,
which is of particular benefit when a mesh of interactions occurs. Transaction
Tracking workspaces do not currently display this information, but the interaction
data presented is more accurate when provided. Some suggestions for common
contextual information to include in events are:

Resource
For applications that query some resource in an external application, such
as a message queue or database table, the name of that resource. For
example, the queue name or database table name.

SourceHost
The host name of the source of the interaction.

DestinationHost
The host name of the destination of the interaction.

The contexts that the Transaction Collector should aggregate are specified in the
Context Mask file. See Appendix E, “Transaction Collector Context Mask,” on page
87 for more information on this file.

Blocking events
Blocking events indicate the start of a transaction that causes an application or
process to wait for a response.

Transaction Tracking API allows you to provide enough information when creating
an event so that the correlation system can determine whether or not the event is
part of a synchronous transaction. This can help the system when it calculates the
System Time metric of an interaction. A description of the metrics produced by the
correlation system is outside the scope of this document.

Specify events as blocked if and only if they are related to the start of a transaction
that will cause the code to wait for a response, which is referred to as a
synchronous transaction. Note that blocking can still occur in an asynchronous
transaction; for example, an asynchronous transaction may synchronize at some
point, leading to a blocking event being generated.

Java
event.setBlocked(true);

Chapter 2. Transaction Tracking API 17

C/C++
event.blocked = 1;

Example: blocking events
This example shows how to instrument a partially asynchronous transaction.

In the transaction example shown in Figure 3, the client application makes a
nonblocking request to the server application, and then continues to perform some
computation. When it is ready to block while waiting for the response, it sends a
HERE event with the blocked flag set. This indicates that a previously asynchronous
transaction has become synchronous. The HERE event type indicates that an event
occurs after a transaction starts and before the transaction ends, but is not
necessarily related to an interaction between applications.

Platform-specific issues
Applications on z/OS systems send event data using EBCDIC with the exception
of Java applications.

By default, Transaction Tracking translates all event data from EBCDIC to ASCII.
However if some data supplied is binary or ASCII data, this translation must be
avoided. The Transaction Tracking API structure includes flags that can be set to
stop this translation. See the SCYTSAMP dataset for examples.

Client Server

STARTED

Blocked
waiting for
response.

Unblocked
continuing
processing
until response
received.

STARTED_INBOUND

OUTBOUND_FINISHED

OUTBOUND
Unblocked

HERE
Blocked

INBOUND_FINISHED
Blocked

Figure 3. Partially asynchronous transaction

18 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

High Level Language reference
This section is for COBOL, C, C++ and PL/I High Level Languages. Transaction
Tracking API function names all begin with cyta for z/OS, and tt for non-z/OS
platforms (although cyta can also be used).

Functions
Descriptions of Transaction Tracking functions callable from High Level Languages.

Function: check_version
Name: CYTA_check_version (z/OS and non-z/OS); TT_check_version
(non-z/OS)
Purpose: Checks that the header being compiled against matches the library
being linked against.
Parameters required: None.
Return codes: See Appendix B, “Return codes,” on page 67.
C definition: int CYTA_check_version(void);

Notes:

v Call CYTA_check_version before any other Transaction Tracking API function,
including CYTA_init.

v Not available on z/OS systems.
v Not required, however it can assist developers in cases where structures defined

in an older header do not line up with what is expected by a newer library.

Examples:

C:
#include <cytapi.h>
rc = CYTA_check_version();

Function: init
Name: CYTA_init (z/OS and non-z/OS); TT_init (non-z/OS)
Purpose: InitializeTransaction Tracking API for High Level Language Callers.
Parameters required: Configuration Block with valid server as described in
Appendix A, “Transport address format,” on page 65.
Return codes: See Appendix B, “Return codes,” on page 67.
C Definition: int CYTA_init(cyta_config_t *config);

Notes:

v After init has been called, the Configuration Block must not be modified
v Callers must first initialize the Configuration Block to zeros.
v If the server field is blank, the default server is used. See Appendix A,

“Transport address format,” on page 65 for further information.

Examples:

C:

Chapter 2. Transaction Tracking API 19

#include <cytapi.h>
cyta_config_t configblk;
memset(&configblk, 0, sizeof(config));
configblk.server = “tcp:svr.mycompany.com:5455”;
rc = CYTA_init(&configblk); /* Config token in configblk*/

COBOL:
DATA DIVISION.
Working-Storage Section.
COPY CYTABCON.
COPY CYTABCFG.
01 SERVER pic x(8) value 'SSN:CYTZ’;
01 RC pic S(9) comp.
PROCEDURE DIVISION.
SET CYTA-CFG-SERVER TO ADDRESS OF SERVER.
CALL "CYTA_init" USING CYTA-CFG-BLOCK RETURNING RC.

PL/I:
%include CYTAPEVT; /* Area to hold event blk */
%include CYTAPCFG; /* Area to hold Config Blk */
Dcl server Char(8) Init("SSN:CYTZ");
Dcl stgarea Area; /* stgarea is 1000 bytes */
Allocate cytacfg In(stgarea);
cytacsrv = Addr(server); /* Set Container subsystem */
Call CYTA_init(cytacfg); /* Config token in cytacfg */

Function: shutdown
Name: CYTA_shutdown (z/OS and non-z/OS); TT_shutdown (non-z/OS)
Purpose: Shut down Transaction Tracking API. For z/OS, this function is not
required, and is included for compatibility with other platforms only.
Parameters required: Configuration Block initialized with CYTA_init.
Return codes: See Appendix B, “Return codes,” on page 67.
C Definition: int CYTA_shutdown(cyta_config_t *config);

Example:

C:
#include <cytapi.h>
int rc;
cyta_config_t configblk;
cyta_event_t eventblk;
memset(&configblk, 0, sizeof(configblk));
memset(&eventblk, 0, sizeof(eventblk));
configblk.server = “tcp:svr.mycompany.com:5455”;
rc = CYTA_init(&configblk);
/* code here to populate event block */
rc = CYTA_track(&configblk, &eventblk);
rc = CYTA_shutdown(&configblk);

Function: strerror
Name: CYTA_strerror (z/OS and non-z/OS); TT_strerror (non-z/OS)
Purpose: Return a string describing a return code from a Transaction Tracking
API function.
Parameters required: Return code from a Transaction Tracking API function.
Output: String describing the error code.
Return codes: None.
C Definition: const char* CYTA_strerror(int errno);

20 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Notes: Only available for C and C++.

Examples:

C:
#include <cytapi.h>
int rc;
rc = CYTA_init(&configblk);
if (rc > 0)

printf(“Init error: %s\n”, CYTA_strerror(rc));

Function: time
Name: CYTA_time (z/OS and non-z/OS); TT_time (non-z/OS)
Purpose: Get time now in seconds and microseconds since 00:00:00, Jan 1, 1970.
Parameters required: tt_time_t structure to receive time.
Output: Current wall clock time returned in the tt_time_t structure.
Return codes: None.
C Definition: cyta_time_t* CYTA_time(cyta_time_t*);

Notes: This function is only required if a timestamp different from the current
timestamp is required on an event. If the timestamp on an event sent to track is
zero, the current time is automatically inserted.

Examples:

C:
#include <cytapi.h>
cyta_time_t now;
CYTA_time (&now);

COBOL:
DATA DIVISION.
Working-Storage Section.
COPY CYTABEVT.
01 RC pic S(9) comp.
PROCEDURE DIVISION.
CALL "CYTA_time" USING CYTA-E-SECONDS RETURNING RC.

PL/I:
%include CYTAPEVT;
Dcl stgarea Area; /* stgarea is 1000 bytes */
Allocate cytacfg In(stgarea);
Call CYTA_time(cytaesec);

Function: token
Name: CYTA_token (z/OS and non-z/OS); TT_token (non-z/OS)
Purpose: Obtain a fullword token unique across the enterprise for High Level
Language Callers.
Parameters required: Configuration Block initialized with CYTA_init.
Output: Fullword unique token returned in area supplied.
Return codes: See Appendix B, “Return codes,” on page 67.
C Definition: int CYTA_token(cyta_config_t *config, cyta_int32_t *token);

Examples:

Chapter 2. Transaction Tracking API 21

C:
#include <cytapi.h>
int rc;

int token;
cyta_config_t configblk;
memset(&configblk, 0, sizeof(config));
configblk.server = “tcp:svr.mycompany.com:5455”;
rc = CYTA_init(&configblk);
if (rc == TT_SUCCESS)
rc = CYTA_token(&configblk, &token);

COBOL:
DATA DIVISION.
Working-Storage Section.
COPY CYTABCON.
COPY CYTABCFG.
01 SERVER pic x(8) value 'SSN:CYTZ’;
01 TOKEN pic S(9) comp.
01 RC pic S(9) comp.
PROCEDURE DIVISION.
SET CYTA-CFG-SERVER TO ADDRESS OF SERVER.
CALL "CYTA_init" USING CYTA-CFG-BLOCK RETURNING RC.
CALL “CYTA_token” USING CYTA-CFG-BLOCK TOKEN RETURNING RC.

PL/I:
%include CYTAPEVT;
%include CYTAPCFG;
Dcl server Char(8) Init("SSN:CYTZ");
Dcl token Fixed(32);
Dcl stgarea Area; /* stgarea is 1000 bytes */
Allocate cytacfg In(stgarea);
cytacsrv = Addr(server);
Call CYTA_init(cytacfg);
Call CYTA_token(cytacfg,token);

Function: track
Name: CYTA_track (z/OS and non-z/OS); TT_track (non-z/OS)
Purpose: Send completed event for High Level Language Callers.
Parameters required: Configuration Block initialized with CYTA_init.
Completed event block.
Output: Event sent if valid and Transactions operational.
Return codes: See Appendix B, “Return codes,” on page 67.
C Definition: int CYTA_track(cyta_config_t *config, cyta_event_t *event);

Notes:

v If the time in the event block is zero, the current time is automatically inserted
for the event.

v The contents of the event block are unchanged by track. Hence the same event
block can be used for multiple track calls, with only the changed fields being
updated

Examples:

C:
#include <cytapi.h>
int rc;

int token;
cyta_config_t configblk;

22 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

cyta_event_t eventblk;
memset(&configblk, 0, sizeof(configblk));
memset(&eventblk, 0, sizeof(eventblk));
configblk.server = “tcp:svr.mycompany.com:5455”;
rc = CYTA_init(&configblk);
/* code here to populate event block */
rc = CYTA_track(&configblk, &eventblk);

COBOL:
DATA DIVISION.
Working-Storage Section.
COPY CYTABCON.
COPY CYTABCFG.
COPYT CYTABEVT.
01 SERVER pic x(8) value 'SSN:CYTZ’;
01 TOKEN pic S(9) comp.
01 RC pic S(9) comp.
PROCEDURE DIVISION.
SET CYTA-CFG-SERVER TO ADDRESS OF SERVER.
CALL "CYTA_init" USING CYTA-CFG-BLOCK RETURNING RC.
* code here to populate event block
CALL “CYTA_track” USING CYTA-CFG-BLOCK CYTA-EVENT RETURNING RC.

PL/I:
%include CYTAPEVT;
%include CYTAPCFG;
Dcl server Char(8) Init("SSN:CYTZ");
Dcl token Fixed(32);
Dcl stgarea Area; /* stgarea is 1000 bytes */
Allocate cytacfg In(stgarea);
cytacsrv = Addr(server);
Call CYTA_init(cytacfg);
/* code here to populate event block */
Call CYTA_token(cytacfg,token);

C types and structures
Transaction Tracking API provides a set of publicly available data types and
structures. The ttapi.h (non-z/OS) and SCYTSAMP CYTAPI (z/OS) include files
define many C and C++ data structures that can be used throughout your
program. For z/OS, all data types begin with cyta, for non-z/OS users, they can
start with tt or cyta.

Basic data types

Transaction Tracking API defines common names for various basic data types:

tt_uint64_t
Unsigned 64-bit integer. (cyta_uint64_t for z/OS)

tt_int64_t
Signed 32-bit integer. (cyta_int64_t for z/OS)

tt_uint32_t
Unsigned 32-bit integer. (cyta_uint32_t for z/OS)

tt_int32_t
Signed 32-bit integer. (cyta_int32_t for z/OS)

tt_uint16_t
Unsigned 16-bit integer. (cyta_uint16_t for z/OS)

tt_int16_t
Signed 16-bit integer. (cyta_int16_t for z/OS)

Chapter 2. Transaction Tracking API 23

tt_uint8_t
Unsigned 8-bit integer. (cyta_uint8_t for z/OS)

tt_int8_t
Signed 8-bit integer. (cyta_int8_t for z/OS)

tt_byte_t
Indicates that a memory address is considered as opaque, and may contain
any 8–bit value. (cyta_byte_t for z/OS)

tt_config_t (cyta_config_t for z/OS)

Defines generic configuration parameters for Transaction Tracking API.
typedef struct TT_CONFIG_T
{

const char* server;
tt_uint32_t connect_timeout;
tt_uint32_t connect_retries;
tt_uint32_t connect_retry_interval;
void* handle;
const char* token_filename;
tt_uint16_t queue_size;

} tt_config_t;

tt_config_t.server
The address of the Transaction Collector to send events to. The address
format is defined in Appendix A, “Transport address format,” on page 65.
If this field is set to zero, it is replaced with the default server.

tt_config_t.connect_timeout
Length of time (in milliseconds) to wait for a TCP/IP connection to the
Transaction Collector before timing out. Default is 30000 (30 seconds).

Note: Non-listening ports behave differently on different platforms:
v On UNIX platforms, if nothing is listening on the specified port the

connect function returns immediately with an error, regardless of the
timeout specified.

v On Windows, the connection times out.
v All systems time out if something is listening but the system is too busy

to accept the connection in time.
v On all systems, if tt_config_t.connect_timeout = 0, the default value of

30000 (30 seconds) is used.

tt_config_t.connect_retries
Number of times to retry a failing TCP/IP connection. If set to zero,
Transaction Tracking retries indefinitely.

If connect_retries=0, then on TT_shutdown it behaves as if there are no
retries.

Upon shutdown Transaction Tracking API tries up to connect_retries+1
attempts. The connect timeout doesn't have an effect without a listening
port, however, the connect_retry_interval does have an affect.

tt_config_t.connect_retry_interval
Interval to wait before retrying TCP/IP connection. Default is 5000 (5
seconds). If tt_config_t.connect_retry_interval = 0, the default value of
5000 (5 seconds) is used.

tt_config_t.handle
Internal use only.

24 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

tt_config_t.token_filename
The file name of the token prefix file. This functionality is reserved for
future use.

tt_config_t.queue_size
Maximum number of events to queue while waiting for a TCP/IP
connection. Default is 1000. If tt_config_t.queue_size = 0, the default
value of 1000 is used. If more than 1000 events are received and there is no
TCP/IP connection to the Transaction Collector, the oldest event is
discarded.

Note: If you specify an incorrect transport address when the transport prefix does
not refer to an existing transport, such as tcp in tcp:127.0.0.1:5455, an error is
returned.

tt_time_t (cyta_time_t for z/OS)

Describes a point in time relative to the epoch, which is 00:00:00 UTC, January 1,
1970.Transaction Tracking API replaces instances of tt_time_t with both zero
seconds and zero microseconds with the current time.
typedef struct TT_TIME_T
{

tt_uint32_t sec;
tt_uint32_t usec;

} tt_time_t;

tt_time_t.sec
Seconds component

tt_time_t.usec
Microseconds component

tt_event_t (cyta_event_t for z/OS)

Decribes an event that has occurred in the instrumented application. For example,
the event may describe the beginning or completion of a transaction, or the
sending or receipt of a request or response.
typedef struct TT_EVENT_T
{

tt_uint32_t type;
tt_time_t timestamp;
tt_instance_id_t instance_id;
tt_association_id_t horizontal_id;
tt_association_id_t vertical_id;
tt_values_list_t* horizontal_context;
tt_values_list_t* vertical_context;
int blocked;
void* reserved1;

} tt_event_t;

tt_event_t.type
The event type. For example, TT_STARTED_EVENT, or TT_OUTBOUND_EVENT.

tt_event_t.timestamp
The point in time at which the event occurred.

tt_event_t.instance_id
Transaction ID and instance-specific data.

tt_event_t.horizontal_id
Horizontal linking and stitching IDs.

Chapter 2. Transaction Tracking API 25

tt_event_t.vertical_id
Vertical linking and stitching IDs.

tt_event_t.horizontal_context
Horizontal context. A NULL-pointer is interpreted as an empty set.

tt_event_t.vertical_context
Vertical context. A NULL-pointer is interpreted as an empty set.

tt_event_t.blocked
Determines the blocked status of the event. Zero equates to unblocked,
while a non-zero value equates to blocked.

tt_event_t.reserved1
Reserved for future use.

tt_association_id_t (cyta_association_t for z/OS)

Defines the information that identifies associations between sets of events, that is,
the linking and stitching IDs.
typedef struct TT_ASSOCIATION_ID_T
{

tt_uint32_t caller_type;
const tt_byte_t* link_id;
tt_uint8_t link_id_size;
tt_uint16_t flags;
tt_values_list_t* stitch_ids;

} tt_association_id_t;

tt_association_id_t.caller_type
Caller type for the link ID. This is used to eliminate collisions in link IDs
between different callers of Transaction Tracking API.

tt_association_id_t.link_id
Address of the link ID for this event.

tt_association_id_t.link_id_size
Size of the link ID, in 8-bit bytes.

tt_association_id_t.flags
Flags that affect how the association ID is interpreted by Transaction
Tracking API. For z/OS, CYTA_ASSOCIATION_FLAG_LINK_RAW (1) specifies
that the link_id field is binary or ASCII data, and is not to be translated
from EBCDIC to ASCII.

tt_association_id_t.stitch_ids
Stitching IDs. A NULL-pointer is interpreted as an empty set.

tt_instance_id_t (cyta_instance_id_t for z/OS)

Defines the information that identifies transaction-specific data.
typedef struct TT_INSTANCE_ID_T
{

const tt_byte_t* transaction_id;
tt_uint16_t size;
tt_uint16_t flags;
tt_values_list_t* transaction_data;

} tt_instance_id_t;

tt_instance_id_t.transaction_id
Address of the transaction ID for the event.

26 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

tt_instance_id_t.size
Size of the transaction ID for the event, in 8-bit bytes.

tt_instance_id_t.flags
Flags which affect how the instance ID is interpreted by Transaction
Tracking API. For z/OS, CYTA_INSTANCEID_FLAG_RAW (1) specifies that the
transaction_id field is binary or ASCII data, and is not to be translated
from EBCDIC to ASCII.

tt_instance_id_t.transaction_data
Transaction instance-specific data. A NULL pointer is interpreted as an
empty set.

tt_values_list_t (cyta_values_list_t for z/OS)

Defines a singly-linked list of name-value pairs.
typedef struct TT_VALUES_LIST_T
{

struct TT_VALUES_LIST_T* next;
const char* name;
const tt_byte_t* value;
tt_uint16_t size;
tt_uint16_t flags;

} tt_values_list_t;

tt_values_list_t.next
Pointer to the next item in the list. The last item in the list must have next
set to zero.

tt_values_list_t.name
Name portion of the name/value pair. This is expected to be a
null-terminated UTF-8 string of size less than or equal to 256 characters
(including the null character).

tt_values_list_t.value
Value portion of the name-value pair. This is treated as a binary string. The
value does not need to be null-terminated.

tt_values_list_t.size
Size of the value, in 8-bit bytes.

tt_values_list_t.flags
Flags which affect how the name/value pair is interpreted by Transaction
Tracking API. Valid flags are:
v CYTA_VALUELIST_FLAG_NAME_RAW (1)– for z/OS only. Specifies that the

name field is binary or ASCII data, and is not to be translated from
EBCDIC to ASCII.

v CYTA_VALUELIST_FLAG_VALUE_RAW (2)– for z/OS only. Specifies that the
value field is binary or ASCII data, and is not to be translated from
EBCDIC to ASCII.

v CYTA_VALUELIST_FLAG_VALUE_RAW (3)– for z/OS only. Specifies that the
name or value field is binary or ASCII data, and is not to be translated
from EBCDIC to ASCII.

Chapter 2. Transaction Tracking API 27

Java reference
Reference information for the Transaction Tracking API Java wrapper, TTAPI4J, is
available separately as Java API documentation (Javadoc).

See the Transaction Tracking API SDK and Javadoc for TTAPI4J that are installed in
tusupport/ttapi/doc/ttapi4j as part of the Transaction Collector installation for
further information.

High Level Assembler Reference
This section is for High Level Assembler (HLASM) on z/OS systems.

HLASM Macro: CYTADFV
Macro to create Name/Value pairs to specify the minimal Vertical Context for an
event.

Purpose

Prepare minimum required linked Vertical Context Name/Value pair entries for an
event.

Input registers

No requirements.

Output registers
v R0 - 3 used as work register
v R4 - 13 unchanged
v R14 - 15 used as work register

Syntax

Syntax Description

name name: symbol. Begin name in column 1

CYTADFV One or more blanks must follow CYTADFV

APPL=appl appl – Application Name. Constant string in
single quotation marks or pointer to string
(register R2 – R12 in brackets or Rx address).
Default: Jobname (if batch) or Address Space
name (otherwise). Optional.

APPLLEN=length length – Length of Application Name.
Decimal constant in single quotation marks,
register (R2-R12 in brackets) or halfword
label. Optional if APPL is a label or constant
string.

XLATEA=yes/no If NO, no translation from EBCDIC to ASCII
is performed for the application name when
sending event to Transaction Collector.
Otherwise the application name is translated
from EBCDIC to ASCII. Set this value to YES
(default) if the application name is an
EBCDIC string, NO otherwise. Optional.

28 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Syntax Description

COMPONENT=comp comp – Component Name. Constant string in
single quotation marks or pointer to string
(register R2 – R12 in brackets or Rx address).
Default: BATCH (if batch) or STC
(otherwise). Optional.

COMPONENTL=length length – Length of Component name.
Decimal constant in single quotation marks,
register (R2-R12 in brackets) or halfword
label. Optional if COMPONENT is a label or
constant string

XLATEC=yes/no If NO, no translation from EBCDIC to ASCII
is performed for the component name when
sending event to Transaction Collector.
Otherwise the component name is translated
from EBCDIC to ASCII. Set this value to YES
(default) if the component name is an
EBCDIC string, NO otherwise. Optional.

HOST=host host – Host Name. Constant string in single
quotation marks or pointer to string (register
R2 – R12 in brackets or Rx address). Default:
Sysplex name and z/OS SMFID (separated
by a ‘/' – for example SYSPLEX1/MVS1).
Optional.

HOSTL=length length – Length of Host Name. Decimal
constant in single quotation marks, register
(R2-R12 in brackets) or halfword label.
Optional if HOST is a label or constant
string.

XLATEH=yes/no If NO, no translation from EBCDIC to ASCII
is performed for the host name when
sending event to Transaction Collector.
Otherwise the host name is translated from
EBCDIC to ASCII. Set this value to YES
(default) if the host name is an EBCDIC
string, NO otherwise. Optional

TXN=txn txn – Transaction Name. Constant string in
single quotation marks or pointer to string
(register R2 – R12 in brackets or Rx address).
Default: (unknown). Optional

TXNL=length length – Length of Transaction Name.
Decimal constant in single quotation marks,
register (R2-R12 in brackets) or halfword
label. Optional if TXNL is a label or constant
string.

XLATET=yes/no If NO, no translation from EBCDIC to ASCII
is performed for the transaction name when
sending event to Transaction Collector.
Otherwise the transaction name is translated
from EBCDIC to ASCII. Set this value to YES
(default) if the transaction name is an
EBCDIC string, NO otherwise. Optional.

Chapter 2. Transaction Tracking API 29

Syntax Description

CHAINTO=ptr ptr – Pointer to an existing Vertical Context
list from which the Name/Value pair entries
are chained. If there are no pair entries,
pointer is zero. Pointer can point to any
existing Name/Value pair in an existing
Vertical Context list. If set, these
Name/Value pairs will be added to the end
of the list. Default 0. Optional.

MF=form form one of S (inline), L (list form), or (E, list
addr) (execute form). Default S. Optional.

Return codes
v none

Notes®

v This macro creates four chained Name/Value pairs that provide the minimum
Vertical Context required for an event.

v If using execute form, ensure that list address is the list form of the CYTADFV
macro, NOT the list form of the CYTANV macro.

Sample
LA R2,VCONTV
LH R3,=AL2(L’VCONTV)

NVNAMC3 CYTANV NAME=’Division’,Value=’Payroll’
CYTADFV TXN=’Txn1’,CHAINTO=NVNAMC3,MF=(E,NVNAMC4)
BR R14

NVNAMC4 CYTADFV MF=L

HLASM Macro: CYTAINIT
Macro to call the CYTA_init function that initializes Transaction Tracking API for
HLASM callers.

Purpose

Initialize Transaction Tracking API for HLASM callers, and return a Configuration
Token for use by other Transaction Tracking macros.

Input registers

No requirements.

Output registers
v R0 - 3 used as work register
v R1 holds Configuration token if R15 = 0, zero otherwise
v R2 - 13 unchanged
v R14 used as work register
v R15 return code

30 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Syntax

Syntax Description

name name: symbol. Begin name in column 1

CYTAINIT One or more blanks must follow CYTAINIT

SUB=subsystem subsystem – Container subsystem – constant
in single quotation marks (4 chars), register
in brackets, or Rx address

MF=form form one of S (inline), L (list form) or (E, list
addr) (execute form). Default S. Optional.

Return codes
v As for CYTA_init function, see Appendix B, “Return codes,” on page 67.

Sample
CYTAINIT SUB=’CYTZ’
CYTAINIT SUB=#SUB1
LA R5,#SUB1
CYTAINIT SUB=(R5),MF=(E,INITL)

INITL CYTAINIT MF=L
#SUB1 DC C’CYTZ’

HLASM Macro: CYTANV
Macro to create a Name/Value pair entry.

Purpose

Prepare a Name/Value pair.

Input registers

No requirements.

Output registers
v R0 - 1 used as work register
v R2 - 13 unchanged
v R14 - 15 used as work register

Syntax

Syntax Description

name name: symbol. Begin name in column 1.

CYTANV One or more blanks must follow CYTANV.

NAME=name name – Name/Value pair name. Constant
string in single quotation marks or pointer
to null terminated string (register R2 – R12
in brackets or Rx address). Required.

VALUE=value value – Name/Value pair value. Constant
string in single quotation marks or pointer
to string (register R2 – R12 in brackets or Rx
address – value string does not have to be
null terminated). Required.

Chapter 2. Transaction Tracking API 31

Syntax Description

LEN=length length – Length of value. Decimal constant in
single quotation marks, register (R2-R12 in
brackets) or halfword label. Optional if
VALUE is a label or constant string.

XLATEN=yes/no If NO, no translation from EBCDIC to ASCII
is performed for the name when sending
events to Transaction Collector. Otherwise
the name is translated from EBCDIC to
ASCII. Set this value to YES (default) if the
name is an EBCDIC string, NO otherwise.
Optional.

XLATEV=yes/no If NO, no translation from EBCDIC to ASCII
is performed for the value when sending
events to Transaction Collector. Otherwise
the value is translated from EBCDIC to
ASCII. Set this value to YES (default) if the
value of the Name/Value pair is an EBCDIC
string, NO otherwise. Optional.

CHAINTO=ptr ptr – Pointer to an existing Name/Value pair
list hat this Name/Value pair entry is to be
chained off, or zero if none. Pointer can
point to any existing Name/Value pair in an
existing Name/Value pair list. If set, this
Name/Value pair will be added to the end
of the list. Default 0. Optional.

MF=form form one of S (inline), L (list form) or (E, list
addr) (execute form). Default S. Optional.

Return codes
v none

Notes
v Label is required for inline form of CYTANV.

Sample
NVNAMC3 CYTANV NAME=’Transaction’,VALUE=TXNVAL, X

LEN=TXNVALL
LA R2,VCONTV
LA R3,L’VCONTV
CYTANV NAME=VCONTN,VALUE=(R2),LEN=(R3), X
CHAINTO=NVNAMC3,MF=(E,NVNAMC4)

BR R14

NVNAMC4 CYTANV MF=L
VCONTN DC ’Process’ Name

DC X’00’ MUST be null terminated
VCONTV DC ’ATM’ Value (not null terminated)
TXNVAL DC ’Txn1’ Value (not null terminated)
TXNVALL DC AL2(L’TXNVAL) Length of value

32 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

HLASM Macro: CYTATOK
Macro to call the CYTA_token function.

Purpose

Obtain fullword token unique across enterprise for HLASM callers.

Input registers

No requirements.

Output registers
v R0 used as work register
v R1 holds unique token if R15 = 0, zero otherwise
v R2 - 13 unchanged
v R14 used as work register
v R15 return code

Syntax

Syntax Description

name name: symbol. Begin name in column 1.

CYTATOK One or more blanks must follow CYTATOK

TOKEN=token token – Fullword Configuration token from
CYTAINIT macro. Register in brackets, or Rx
address. Required.

MF=form form one of S (inline), L (list form) or (E, list
addr) (execute form). Default S. Optional.

Return codes
v As for CYTA_token function. See Appendix B, “Return codes,” on page 67.

Sample
CYTAINIT SUB=’CYTZ’
ST R1,ETOKEN
LR R5,R1
CYTATOK TOKEN=ETOKEN
CYTATOK TOKEN=(R5),MF=(E,TOKL)

TOKL CYTATOK MF=L
ETOKEN DS F

HLASM Macro: CYTATRAK
Macro to call the CYTA_track function.

Purpose

Send completed event for HLASM callers.

Input registers

No requirements.

Chapter 2. Transaction Tracking API 33

Output registers
v R0, R1 used as work register
v R2 - 13 unchanged
v R14 used as work register
v R15 return code

Syntax

Syntax Description

name name: symbol. Begin name in column 1.

CYTATRAK One or more blanks must follow CYTATRAK

type type – Type of event. Must be one of:
STARTED, HERE, INBOUND, OUTBOUND,
FINISHED, STARTED_IN,
OUTBOUND_FIN, INBOUND_FIN.
Required.

TIME=time time – STCK value for timestamp of event. If
not specified, current time is used. Register
R2 – R12 in brackets, or Rx address.
Optional.

TXN=transaction transaction – Transaction Identifier. Constant
string in single quotation marks or pointer
to string (register R2 – R12 in brackets or Rx
address). Optional.

TXNLEN=length length – Length of Transaction Identifier.
Decimal constant in single quotation marks,
register (R2-R12 in brackets) or halfword
label. Optional if TXN is a label or constant
string.

XLATET=yes/no If NO, no translation from EBCDIC to ASCII
is performed for the Transaction Identifier
when sending events to Transaction
Collector. Otherwise the Transaction
Identifier is translated from EBCDIC to
ASCII. Set this value to YES (default) if the
Transaction Identifier is an EBCDIC string,
NO otherwise. Optional.

TXNTXT=list list – Pointer to Transaction Context List – a
list of Name/Value pointers. Pointer
(register R2 – R12 in brackets or Rx address)
or zero if none. Default 0. Optional.

HTYPE=type type – Horizontal Caller type. Must be a
valid Caller Type or a number between 0
and 255. Default is ANY. Optional.

HLINK=linkid linkid – Horizontal Link. Constant string in
single quotation marks or pointer to string
(register R2 – R12 in brackets or Rx address).
Optional.

HLINKL=length length – Length of Horizontal Link. Decimal
constant in single quotation marks, register
(R2-R12 in brackets) or halfword label.
Optional if HLINK is a label or constant
string.

34 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Syntax Description

XLATEH=yes/no If NO, no translation from EBCDIC to ASCII
is performed for Horizontal Link when
sending event to Transaction Collector.
Otherwise Horizontal Link is translated
from EBCDIC to ASCII. Set this value to YES
(default) if Horizontal Link is an EBCDIC
string, NO otherwise. Optional.

HCTXT=list list – Pointer to Horizontal Context List – a
list of Name/Value pointers. Pointer
(register R2 – R12 in brackets or Rx address)
or zero if none. Default 0. Optional

HSTITCH=list list – Pointer to Horizontal Stitch List – a list
of Name/Value pointers. Pointer (register R2
– R12 in brackets or Rx address) or zero if
none. Default 0. Optional.

VTYPE=type type – Vertical Caller type. Must be a valid
Caller Type or a number between 0 and 255.
Default is ANY. Optional.

VLINK=linkid linkid – Vertical Link. Constant string in
single quotation marks or pointer to string
(register R2 – R12 in brackets or Rx address).
Optional.

VLINKL=length length – Length of Vertical Link. Decimal
constant in single quotation marks, register
(R2-R12 in brackets) or halfword label.
Optional if VLINK is a label or constant
string.

XLATEV=yes/no If NO, no translation from EBCDIC to ASCII
is performed for Vertical Link when sending
events to the Transaction Collector.
Otherwise Vertical Link is translated from
EBCDIC to ASCII. Set this value to YES
(default) if Vertical Link is an EBCDIC
string, NO otherwise. Optional.

VCTXT=list list – Pointer to Vertical Context List – a list
of Name/Value pointers. Pointer (register R2
– R12 in brackets or Rx address) or zero if
none. Default 0. Optional.

VSTITCH=list list – Pointer to Vertical Stitch List – a list of
Name/Value pointers. Pointer (register R2 –
R12 in brackets or Rx address) or zero if
none. Default 0. Optional.

TOKEN=token token – Fullword Configuration token from
CYTAINIT macro. Register in brackets, or Rx
address. Required.

MF=form form one of S (inline), L (list form) or (E, list
addr) (execute form). Default S. Optional.

Return codes
v As for CYTA_track function. See Appendix B, “Return codes,” on page 67.

Chapter 2. Transaction Tracking API 35

Notes
v If using execute form, event block is NOT cleared before event is sent. Any

previous event values will not be reset.
v If execute form of CYTATRAK is used with no parameters except TOKEN, then the

list address must point to a fully formed event block.
v Valid Caller Types are:

– ANY – Type 0 – no specified caller type
– GPS – Type 1 - GPS
– ARM – Type 2 - ARM
– WSA – Type 3 – WSA
– CTG – Type 4 – CICS Transaction Gateway
– MQ – Type 5 – Websphere MQ
– SOA – Type 6 - SOA
– WR – Type 7 – Web Resources
– CICS – Type 8 - CICS
– IMS – Type 9 – IMS
– WMB – Type 10 – WebSphere Message Broker
– DB2 – Type 11 – DB2
– IMS Connect – Type 13 – IMS Connect
– Tuxedo – Type 14 – Tuxedo
– Optim Performance Manager – Type 15 – Optim Performance Manager
– .Net – Type 16 – .NET
– CAT – Type 17 – Citrix and Terminal servers
– WRM – Type 18 – Web Response Monitors
Caller Types can be any of these strings, or any number between 0 and 255.
Caller Types 0-199 are reserved by IBM. Caller Types 200-255 are available to
users.

Sample
CYTAINIT SUB=’CYTZ’
ST R1,ETOKEN
LA R5,VCONTXT
CYTATRAK TYPE=STARTED,VCTXT=VCONTXT,VLINK=’LINK1’, X

HLINK=HLINK1,HLINKL=HLINK1L,TOKEN=ETOKEN
CYTATRAK TYPE=HERE,VCTXT=(R5),MF=(E,TRAKL)
* Code to fully populate event EVENT1 here
CYTATRAK TOKEN=ETOKEN,MF=(E,EVENT1)
BR R14
TRAKL CYTATRAK MF=L
EVENT1 CYTAEVNT MF=L
ETOKEN DS F
#HLINK1 DC C’HLinkID’
#HLINK1L DC AL2(L’#HLINK1)

36 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

.NET bindings for Transaction Tracking API
Transaction Tracking supports .NET bindings on Windows 2003 and 2008 32-bit
and 64-bit systems.

.NET bindings are included in the Transaction Tracking API. It consists of a single

.NET Assembly DLL file, IBM.Tivoli.TTAPI.dll, and is packaged inside the Windows
Transaction Tracking API SDK. The SDK also contains a sample application and
API documentation.

Windows 2003 and 2008 32-bit and 64-bit system use different versions of .NET
bindings. Windows 32-bit uses .NET 1.1, and Windows 64-bit uses .NET 2.0.

Chapter 2. Transaction Tracking API 37

38 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Chapter 3. Generic TCP Decoder

The Generic TCP Decoder enables you to develop modules for decoding and
processing extra network protocols.

The Generic TCP Decoder consists of the following components:
v Web Response Time Module API framework
v Generic TCP Module

Generic TCP Decoder file location

You can find files for the Generic TCP Decoder in the following locations:
v On Linux and UNIX systems, $CANDLE_HOME/tmaitm6/wrm/$plat/modules
v On Windows 32-bit systems, %CANDLE_HOME%\TMAITM6\wrm\Analyzer\modules
v On Windows 64-bit systems, %CANDLE_HOME%\TMAITM6\wrm\Analyzer\amd64\

modules

Web Response Time Module API
The Web Response Time Module API is an Application Programming Interface for
developing third-party modules for decoding and processing network protocols
using Web Response Time.

Overview

The API consists of two major components:
v Module management (definition, initialization, termination)
v Processing (decoding, information extraction)

Module management
Modules can be defined, initialized and terminated.

Defining a module

Modules are defined by two required elements:
v XML file specifying some information regarding the module, such as its name,

what data it requires as input, and what it generates as output
v DLL shared object implementing the wrt_module_t API

The XML file schema describes:
v Name of the module (for example, the protocol name)
v Filters (for example, the TCP port number for traffic of interest to the module)
v Required input (context and metrics)
v Context and metrics generated by the module during processing

The wrt_module_t API is a C structure containing:
v Module version
v Module name (matching the name specified in the XML file)

© Copyright IBM Corp. 2008, 2015 39

v Function pointers for initializing and terminating an instance of the module, and
for processing data

The C header provided defines a macro, WRT_MODULE_DEFINE, that should be used to
define a module. For example:
WRT_MODULE_DEFINE(foo) = {

WRT_MODULE_VERSION,
"foo"
&foo_init_function,
&foo_term_function,
&foo_process_function

};

The WRT_MODULE_DEFINE macro creates a globally visible symbol that defines the
information described above, that is the module's name, API version, and entry
points to the module. Use the WRT_MODULE_VERSION macro as the first argument,
which is always the most current API version defined by the C header.

Module initialization

Web Response Time is multi-threaded, and has the capability to process multiple
protocol sessions in parallel. To optimize performance, it is often preferable to have
independent instances of a module for each thread, as they process independent
protocol sessions.

The module’s initialization function (as specified in the wrt_module_t) is invoked
once for each thread performing data processing. The function, provided by the
module implementor, accepts a wrt_module_api_t*, wrt_module_config_t*, and a
(output parameter) wrt_module_instance_t*.

The wrt_module_api_t structure contains function pointers for callbacks to the
module container. The wrt_module_config_t structure corresponds to and is
pre-populated with the module’s XML descriptor file contents.

If the module wishes to store any instance-specific data, it may store it in the
wrt_module_instance_t pointer. This data is passed on to the other module
functions (terminate, process).

Aside from general resource initialization, one significant activity for initialization
functions is locating the unique numeric IDs of context and metric items. In order
to minimize performance overhead in the API, context and metrics are referred to
by a numeric ID. The XML file names each input and output context and metric;
the wrt_module_config_t applies a unique numeric ID to each name.

If the initialization function returns a successful status, the module instance is
provided with data for processing according to the filters specified in the module’s
XML descriptor file. If the function returns an error code, there is no processing,
and no corresponding termination call; initialization calls that fail must ensure that
they release all acquired resources before returning.

An example initialization function is listed below:
typedef struct foo_instance {

wrt_context_id_t baz_id;
} foo_instance_t;

wrt_api_status_t foo_init_function(wrt_module_api_t *api,
const wrt_module_config_t *config,
wrt_module_instance_t *instance) {

40 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

wrt_context_descriptor_t *d;
foo_instance_t *foo_instance = malloc(sizeof(foo_instance_t));
if (!foo_instance)

return WRT_API_STATUS_NOMEM;
memset(foo_instance, 0, sizeof(foo_instance_t));

/* Look for the output context with the name "baz", and store its
* numeric ID. */

d = config->output_context;
for (; d && !foo_instance->baz_id; d = d->next) {

if (strcmp(d->name, "baz") == 0)
foo_instance->baz_id = d->id;

}
if (!foo_instance->baz_id) {

free(foo_instance);
return WRT_API_STATUS_BADCFG;

}

*instance = foo_instance;
return WRT_API_STATUS_OK;

}

Module termination

For each successful invocation of the initialization function, there is a matching call
to the termination function when the module is unloaded (which is currently only
at process termination time). The termination function is provided with the
wrt_module_instance_t that may have been set by the initialization function; this
may be used to manage resource lifetime.

An example initialization function is shown below. This function complements the
foo_init_function listed in the previous section.
wrt_api_status_t foo_term_function(wrt_module_instance_t instance) {

foo_instance_t *foo_instance = (foo_instance_t*)instance;
/* release resources stored in foo_instance */
free(foo_instance);
return WRT_API_STATUS_OK;

}

Data processing
The purpose of a module is to extract some information from its input, and
generate some contextual information and metrics as output.

Limitations

As this is a sample module, some protocols may have only limited
implementation. For example, for LDAP, only search type requests are extracted.
You can expand the information that can be decoded for a protocol using the
“Generic TCP Module” on page 45.

Event-driven processing

Processing is triggered by a change in the input (for example, additional payload),
which leads to an invocation of the module’s process function.

Note: The Web Response Time Module API is designed to support chaining of
modules. This feature is not currently implemented, however it is referred to in
this guide. In the current implementation, each user module is provided with data
from a TCP or IPv4 segment reassembler, which delivers data to modules based on

Chapter 3. Generic TCP Decoder 41

request/reply state changes. Data from the user modules is not processed by any
further modules; the data is sent directly to the Web Response Time agent for
filtering, aggregation, and reporting.

Each invocation of the module’s process function is provided with three
parameters: the wrt_module_instance_t initialized by init, a wrt_api_session_t
handle, and a wrt_api_data_t handle. The session handle is common for each call
to process for the same network session (for example, TCP session); this handle
can be used to maintain state between calls to process. The data handle provides
access to the currently available request/reply data, context, and metrics.

TCP-based protocols are usually stateful, which means some state must be stored
between calls to the module’s process function to decode them. Even non-stateful
protocols may require some state passing, as the processing may be provided with
partial data that must be either processed immediately, or buffered by the module.
Both scenarios are described in the following sections.

Storing state

As mentioned above, the wrt_api_session_t handle may be used to maintain state
between calls to process. This can be done by using the wrt_module_api_t
set_userdata, and get_userdata functions.

For example, to store some data in the session, use the following code:
void my_destructor(wrt_api_session_t session, void *data) {

free(data);
}
...
void *userdata = malloc(sizeof(long)); /* any data that fits in void* */
wrt_api_status_t status = api->set_userdata(session, userdata, &my_destructor);

If the call to set_userdata succeeds (that is, it returns zero), retrieve the value later
with get_userdata. When the session terminates, the destructor (if specified) will
be invoked with the session and the userdata as arguments.

To retrieve the userdata, call the API as follows:
void *userdata;
wrt_api_status_t status = api->get_userdata(session, &userdata);

If no data was previously set, get_userdata returns WRT_API_STATUS_NODATA;
otherwise it copies the value into the provided pointer, and then returns
WRT_API_STATUS_OK (zero). For a new session, userdata is always unset. A common
pattern for initializing state for session decoding is to first call get_userdata, check
if WRT_API_STATUS_NODATA was returned, and if so create a new state object and call
set_userdata.
struct my_session_state *state = NULL;
wrt_api_status_t status = api->get_userdata(session, (void**)&state);
if (status == WRT_API_STATUS_NODATA)
{

state = malloc(sizeof(struct my_session_state));
/* init state */
status = api->set_userdata(session, state, &destroy_state);
if (status != WRT_API_STATUS_OK)
{

/* catastrophic failure: could not set state. */
}

}

42 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Buffering data

In order to minimize resource requirements, the module container does not retain
payload data after it has provided it to a module. If a module is presented with
partial data, and the module cannot process the data until it is received in its
entirety, the module must perform its own buffering.

To buffer data, use the session state and userdata mechanism described above. For
example, you could store a state structure which contains the amount of data
buffered so far, and a pointer to a heap-allocated copy of the data. The API flow in
process is similar to the following:
1. Obtain or initialise the session state, using the pattern described above
2. Obtain the request/reply payload data, accumulating it into any previously

buffered payload data.
3. Process the currently buffered data, and retain only the unprocessed data.

Contextual information and metrics

When a module processes some data, it may choose to send it along to the next
module in the processing chain, typically with some additional information that it
has extracted from the input. The data that is sent is transferred through a
wrt_api_data_t handle.

A wrt_api_data_t has associated context information (e.g. the source and
destination IP addresses, source and destination TCP ports), and some metrics (e.g.
the request/reply response time, request timestamp, reply timestamp). Each
module in a processing chain may add to or modify the values in the set, but
never remove information. Thus, all input context and metrics are implicitly
output; only their values may be modified, and additional context and metrics may
be added.

To set context and metrics, a module requires a unique numeric ID for each context
and metric item as described in “Module initialization”. These IDs are provided to
the module via a wrt_module_config_t structure, and the module supplies them to
calls to the get/set_metric and get/set_context API functions.

Context example

A call to get or set context is shown below. In “Module initialization” on page 40 a
context ID was extracted for the context item baz.
wrt_context_id_t baz_id; /* Assigned in foo_init_function. */
wrt_context_type_t ctx_type;
const void *ctx_value;
size_t ctx_size;
wrt_api_status_t status;

status = api->get_context(data, baz_id, &type, &ctx_value, &ctx_size);
/* Do something with the value, then update it. */
status = api->set_context(data, baz_id, type, ctx_value, ctx_size);

There are various in-built context items, depending on the underlying protocol.
The numeric IDs for these context items can be obtained in the same way as
described previously. For request/reply TCP or IPv4, the keys of the context items
are:

Chapter 3. Generic TCP Decoder 43

Context key Description Type

tcp.srcport Source TCP port uint16

tcp.dstport Destination TCP port uint16

ipv4.srcaddr Source IPv4 address ipv4

ipv4.dstaddr Destination IPv4 address ipv4

ipv4.origsrcaddr Original source IPv4 address ipv4

ipv4.origdstaddr Original destination IPv4
address

ipv4

Note: The value of ipv4.srcaddr may be updated to represent a source address
other than the actual address, for example, for HTTP, report X-Forwarded-For. The
value of ipv4.origsrcaddr should always be the actual source IPv4 address (for
example, of the proxy server).

Metrics example

Metrics are handled similarly to context. See below for an example of using
get_metric and set_metric:
wrt_metric_id_t server_time_id; /* Assigned in foo_init_function. */
wrt_metric_type_t type;
wrt_metric_value_t value;
wrt_api_status_t status;

status = api->get_metric(data, server_time_id, &type, &value);
/* wrt_metric_value_t is a union of basic integer types.
* If you don’t know the type of the metric ahead of time,
* check the "type" variable updated by get_metric, and switch
* on the result. For brevity, we assume a specific type here. */

/* The Server Time metric is an unsigned 64-bit integer. */
value.u64 += 42;
status = api->set_metric(data, server_time_id, type, value);

As with context, there are various in-built metrics, depending on the underlying
protocol. For request/reply TCP or IPv4, the metrics are:
v tcp.response_time.total

v tcp.response_time.server

v tcp.response_time.network

v tcp.response_time.load

v tcp.response_time.resolve

v tcp.response_time.client_render

These metrics all have a type of uint64.

See the Enhanced network timing calculations for Web Response Time metrics in
the Administrator's Guide for definitions of these metrics.

Trace logging

To enable you to debug a module, the API provides two functions for logging:
init_log and log_message.

44 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

init_log is an optional function for registering a logging handle with a specified
filename. The filename is used only for identifying log messages. A typical call to
init_log looks like:
wrt_api_log_handle_t log_handle;
wrt_api_status_t status = api->init_log(__FILE__, &log_handle);

log_message formats and logs a message to the module container’s log, optionally
specifying a log handle initialized with init_log. The format is the same as in the
C89/C99 vprintf function. Calls to log_message specify a log level, which is
interpreted by the container to determine whether or not to log the message. A
typical call to log_message looks like:
api->log_message(log_handle, WRT_API_LOG_ERROR,

__func__, __LINE__,
"send_data failed with status code %d",
(int)status);

The log handle parameter may optionally be NULL, in which case the log message
is associated with a filename of the module container’s choosing, instead of a
filename specified by the module.

Generic TCP Module
The Generic TCP Module builds on the Web Response Time Module API
framework to provide a simple configuration file approach to protocol decoding.
The configuration file format is an extension of the normal Web Response Time
Module API XML configuration file.

Basic Generic TCP Module configuration

Because theGeneric TCP Module file is an extension to the Web Response Time
Module API configuration file, configuration directives used to define filtering and
context generation are processed as normal by the framework. Refer to the Generic
TCP Module in the name directive:
<module>
<name>generic</name>
...
</module>

Filters and context output

Define filters and context output as you would for the Web Response Time Module
API XML configuration file:
<filter>

<port>21</port>
</filter>
<input>
</input>
<output>

<context>
<item>

<name>tcp.protocol</name>
<type>string</type>

</item>
<item>

<name>ftp.client.name</name>
<type>string</type>

</item>
<item>

<name>ftp.command</name>

Chapter 3. Generic TCP Decoder 45

<type>string</type>
</item>
<item>

<name>ftp.responsecode</name>
<type>string</type>

</item>
</context>

</output>

In this example, the decoder requests TCP data from port 21 (FTP), and produces
four items of context (tcp.protocol, ftp.client.name, ftp.command and
ftp.responsecode).

Protocol definitions and actions

Next in the XML configuration is the definition of instructions for the generic
decoder. The decoder requires two configuration items: the protocol definition, and
a set of actions. These are defined in the <config> section of the XML configuration
file.
<config>
<section name="rules">

NonCRLFChar = VCHAR / SP
CRLFTerminatedString = *NonCRLFChar CRLF

; Basic request flow
FTP_Session = <ENTRYPOINT> FTP_Banner *FTP_Transaction <END_OF_STREAM>
; The main loop

FTP_Banner = FTP_Responseline

; A transaction is a request followed by a response
FTP_Transaction = FTP_Requestline FTP_Responseline

; Request lines are read from the request stream
; All requests are single lines terminated with CRLF
FTP_Requestline = <FROM REQUEST_STREAM> CRLFTerminatedString

; Response lines are read from the response stream
; Responses may be single line or multi line responses
FTP_Responseline = <FROM RESPONSE_STREAM> FTP_SingleLineResponse /
FTP_MultiLineResponse

FTP_SingleLineResponse = 3DIGIT SP CRLFTerminatedString
; Single line response is nnn <message>

FTP_MultiLineMiddle = CRLFTerminatedString
FTP_MultiLineResponse = 3DIGIT "-" CRLFTerminatedString
; Multi line response is nnn-<message>

*FTP_MultiLineMiddle
; zero or more text lines

FTP_SingleLineResponse
; Terminated by a normal nnn <message>

;
; Deeper decoding
;

; FTP_Request extends the FTP_Requestline rule
FTP_Request = <FROM RULE FTP_Requestline> FTP_Commands CRLF
; Strip the CRLF
; By separating Command and Unknown_Command here,
; we can extend FTP_Command is subsequent rules

FTP_Unknown_Command = FTP_Unknown *NonCRLFChar

46 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

; Entire command is unknown but not necessarily

; bad. We just don’t know/care about it
FTP_Unknown = 1*ALPHA

FTP_Commands = FTP_Command / FTP_Unknown_Command
FTP_Command = FTP_RETR_Command / FTP_STOR_Command / FTP_USER_Command
/ FTP_LIST_Command
FTP_RETR_Command = "RETR" 1*WSP FTP_Get_Filename
FTP_Get_Filename = *NonCRLFChar
; End will consume to the end of the current input

; In this case, that is the end of FTP_Requestline
FTP_STOR_Command = "STOR" 1*WSP FTP_Put_Filename
FTP_Put_Filename = *NonCRLFChar

FTP_USER_Command = "USER" 1*WSP FTP_Username
FTP_Username = *NonCRLFChar

FTP_LIST_Command = "LIST" 1*WSP FTP_ListParameters
FTP_ListParameters = *NonCRLFChar
; Response Handling
FTP_Reply = <FROM RULE FTP_SingleLineResponse> FTP_ResponseCode SP
CRLFTerminatedString

; How do you like your responses reporteds ?
FTP_ResponseCode = 3DIGIT
; Single context with all codes

</section>
<section name="action:FTP_Username">
session.command = "USER " .. MATCH
session.ctxname = "ftp.client.name"
session.ctxval = MATCH
</section>
<section name="action:FTP_Unknown">
session.command = "ftp.command"
session.ctxname = "ftp.command"
session.ctxval = MATCH
</section>
<section name="action:FTP_Get_Filename">
session.command = "GET " .. MATCH
session.ctxname = "ftp.get.filename"

session.ctxval = MATCH
</section>
<section name="action:FTP_Put_Filename">
session.command = "PUT " .. MATCH
session.ctxname = "ftp.put.filename"
session.ctxval = MATCH
</section>
<section name="action:FTP_ListParameters">
session.command = "LIST"
session.ctxname = "ftp.list.parameters"
session.ctxval = MATCH
</section>
<section name="action:FTP_ResponseCode">
session.responsecode = MATCH
</section>
<section name="action:FTP_Transaction">
set_context("tcp.protocol", "ftp")
set_context("ftp.command", session.command);
set_context(session.ctxname, session.ctxval)
set_context("ftp.responsecode", session.responsecode)
send_data()
</section>
</config>

Chapter 3. Generic TCP Decoder 47

The first config section defines the logical structure of the protocol to be decoded.
This definition is encoded as a CDATA block containing Augmented Backus-Naur
Form (ABNF) rules describing the protocol. ABNF (defined in RFC 5234) is a
format commonly used to define protocol structure in RFC documents. The generic
decoder uses these rule definitions to decode packet data. As ABNF definitions do
not normally include directional semantics (for example, server sends X, client
sends Y) several directives are provided by the Generic TCP Module to indicate
flow information in the rule definitions. These are declared as ABNF prose values
(indicated by surrounding brackets, < >). Following the rule definitions, a series of
action sections are used to map rule matches to output context values.

Generic TCP Decoder
The Generic TCP Decoder enables you to develop modules for decoding and
processing extra network protocols.

The Generic TCP Decoder consists of the following components:
v Web Response Time Module API framework
v Generic TCP Module

Generic TCP Decoder file location

You can find files for the Generic TCP Decoder in the following locations:
v On Linux and UNIX systems, $CANDLE_HOME/tmaitm6/wrm/$plat/modules
v On Windows 32-bit systems, %CANDLE_HOME%\TMAITM6\wrm\Analyzer\modules
v On Windows 64-bit systems, %CANDLE_HOME%\TMAITM6\wrm\Analyzer\amd64\

modules

Generic TCP Decoder rules
The decoding engine implemented in the Generic TCP Module takes the provided
rules and attempts to match incoming data from the Web Response Time Module
API against those rules. When rules are matched successfully, the engine passes the
matched data back to the Generic TCP Module, which processes and associates
action sections against the matched rule. The actions accumulate the matched data
until a completed transaction is observed, and the data can be published to the
Web Response Time Module API as context.

ABNF rule definition

The Generic TCP Decoder uses ABNF syntax and defines protocol structure in a
normalized way. The decoder supports ABNF syntax as defined in RFC 5234. This
section describes where the decoder syntax deviates from the standard.

Rules for the decoder are listed in the rules section of the config block. Each rule
has a name and a series of elements and is terminated by the end of line. RFC 5234
defines a rule as being terminated by an internet standard newline (commonly
referred to as CRLF). An internet standard newline is a carriage return (character
0x0d) followed by a line feed (character 0x0a). The Generic TCP Decoder differs
from RFC 5234 in that it allows both CRLF and single LF termination of rules.
When the next rule line is not a rule definition, the line is interpreted as a
continuation of the current rule.

For example:
RuleA = DIGIT OCTET

48 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

http://tools.ietf.org/html/rfc5234

is equivalent to:
RuleA = DIGIT

OCTET

Comments may be included in the rule syntax. Comments are specified using the
semicolon (;) character. Any text between the semicolon and the end of line is
interpreted as a comment. Comments do not affect rule interpretation, so the
following rule definitions are valid:
RuleA = DIGIT OCTET ; A single digit followed by an octet
RuleA = DIGIT ; A single digit

OCTET ; Followed by an octet

Basic rules

All rules are named. The name for a rule is part of the definition, and the rule is
assigned the corresponding syntax
rulename = rule-elements

Fast path: RFC 5234 defines a rulename as starting with an alphabetic character,
followed by any combination of other alphabetic characters, digits, and hyphens,
and are not case sensitive. The Generic TCP Decoderdiffers in that rule names are
case sensitive, and may also include underscore (_) characters.

Rule elements may be:
v A terminal value (that is, a specific character, byte or string)
v The name of another rule
v A repetition of rule-elements
v A sequence of rule-elements
v A choice of alternative rule-elements

Terminal values
Terminal values indicate an exact character, byte, or string match. If the input data
matches the terminal value element, a match is indicated.

Single byte terminal values are defined using either their numerical value
(specified in decimal or hexadecimal format), or as a string of length 1:
Digit_Zero = %x30
Digit_Zero = “0”
Digit_Zero = %d48

In this example, all three definitions are equivalent. The rule Digit_Zero matches
the character 0.

This is different to a byte match:
NULL_Byte = %x00
NULL_Byte = %d00

which matches the byte 0 (a NULL byte).

Strings of bytes may be defined using concatenation. For numerically defined
values (specified in decimal or hexadecimal) the period (.) character is used to
represent the concatenation. For literal strings, multiple characters may appear
between the double quotation marks (" ").

For example, the following strings are equivalent:

Chapter 3. Generic TCP Decoder 49

hello = “hello”
hello = %d104.101.108.108.111
hello = %x68.65.6c.6c.6f

Decimal terminals are defined using the %d notation. Hexadecimal terminals are
defined using the %x notation.

Both decimal and hexadecimal terminals may also define a range of bytes to
match. Using the range specifier (-), you can specify a low and high byte. If the
input byte is inside the range (or equal to either the low or high byte) a match is
indicated.

For example:
lowercase_letter = %x61-7a
lowercase_letter = %d97-122

In this example, both strings match any single lowercase letter (a - z).

Decimal and Hexadecimal values must be in the range of one byte (0 - 255 or
0x00 – 0xFF). Enclose literal string terminals in double quotation marks (" ").

Restriction: RFC 5234 also defines bit values (%b notation). This is not supported.

Repetition rules
Normal repetitions are defined using an asterisk (*), with optional minimum and
maximum indicators.

The rule element following a repetition definition must be matched a number of
times according to these indicators.

The minimum indicator is a decimal number preceding the asterisk, and represents
the minimum number of times the repeated element must match before the
repetition may indicate a match. The minimum may be omitted to represent a
minimum of 0 (an optional repetition).

The maximum indicator is a decimal number following the asterisk, and represents
the maximum number of times the repeated element may match before the
repetition indicates a match. The maximum indicator is used only (and maximal
repetition checks are only made) if the minimum number of repetitions have
matched. To represent an exact repetition, both the minimum and maximum
indicators may be the same value. In this case, the asterisk may be omitted, and a
single decimal number used to indicate the exact repetition.

For example:
lowercase_letter = %x61-7a
word = 1*lowercase_letter ; 1 or more letters
optional_word = *lowercase_letter ; any number of letters
short_word = 1*5lowercase_letter ; 1 to 5 letters
long_word = 6*lowecase_letter ; 6 or more letters
optional_short_word = *5lowercase_letter ; 0 to 5 letters
seven_letter_word = 7*7lowercase_letter ; exactly 7 letters
seven_letter_word = 7lowercase_letter ; exactly 7 letters

The following tables show examples of rule matches with different input.

50 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Table 4. Rule matches with input "1 long day"

Rule Indicates... Match data

lowercase_letter NO_MATCH N/A

word NO_MATCH N/A

optional_word MATCH empty

short_word NO_MATCH N/A

long_word NO_MATCH N/A

optional_short_word MATCH empty

seven_letter_word NO_MATCH N/A

Table 5. Rule matches with input "the quick brown fox"

Rule Indicates... Match data

lowercase_letter MATCH t

word MATCH the

optional_word MATCH the

short_word MATCH the

long_word NO_MATCH N/A

optional_short_word MATCH the

seven_letter_word NO_MATCH N/A

Table 6. Rule matches with input "someone said hello"

Rule Indicates... Match data

lowercase_letter MATCH s

word MATCH someone

optional_word MATCH someone

short_word MATCH N/A

long_word NO_MATCH someone

optional_short_word MATCH N/A

seven_letter_word NO_MATCH someone

In all of these examples, the termination of the repetition where the maximum
indicator is not specified is implied by the next byte of input not matching the
repetition rule (in this case, the space between the words is not a lowercase letter).
Take care to ensure that the repeated element does not arbitrarily match input
data. Generally, the rule after the repetition is not processed until the repetition has
returned a match.

The rule engine attempts to look ahead to the next rule to terminate repetitions as
soon as possible. After the minimum number of repetitions has been matched, the
look-ahead processing attempts to match the look-ahead rule. If it matches, the
repetition is complete and a match is indicated. This look-ahead is limited to
subsequent rules in the same rule definition.

Chapter 3. Generic TCP Decoder 51

Sequence rules
Sequences of rules are created by specifying more than one rule element in a single
rule.

A rule that is defined using a sequence of elements does not indicate a match
unless every rule in the sequence matches in the order specified. As soon as one of
the elements of the sequence indicates that the input data does not match, the rule
indicates that it does not match and will not process the sequence any further.

Sequences are defined by listing a set of rule elements separated with whitespace,
either spaces or tab characters. For example:
SP = %x20
lowercase_letter = %x61-7a
word = 1*lowercase_letter
simple_sentence = word SP word SP word

The simple_sentence rule defines a sequence. For this rule to match, the sequence
of elements must all match.

The following tables show the results of sentence matching with similar, but
slightly different input.

Table 7. simple_sentence rule matches with input "someone said hello"

Rule Sub rule Sub input Indicates... Match data

simple_sentence MATCH someone said hello

word someone said
hello

MATCH someone

SP said hello MATCH " "

word said hello MATCH said

SP hello MATCH " "

word hello MATCH hello

With two spaces between said and hello:

Table 8. simple_sentence rule matches with input "someone said hello"

Rule Sub rule Sub input Indicates... Match data

simple_sentence NO_MATCH N/A

word someone said
hello

MATCH someone

SP said hello MATCH " "

word said hello MATCH said

SP hello MATCH " "

word hello NO_MATCH N/A

simple_sentence uses only as much input as it needs:

52 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Table 9. simple_sentence rule matches with input "someone said hello again"

Rule Sub rule Sub input Indicates... Match data

simple_sentence MATCH someone said hello

word someone said
hello again

MATCH someone

SP said hello again MATCH " "

word said hello again MATCH said

SP hello again MATCH " "

word hello again MATCH hello

Here, the string “ again” is left as input for the next rule.

Choice rules
Choice rules provide a list of elements to try to match against. If any of these
elements matches, a match is indicated for the rule.

Choices are listed in a similar way to sequences, but use the forward slash (/)
character to separate choices. For example:
lowercase_letter = %x61-7a
uppercase_letter = %41-5a
any_letter = lowercase_letter / uppercase_letter

The rule any_letter indicates a match if either the lowercase_letter rule or the
uppercase_letter rule indicate a match.

You can provide any number of choice elements, however attempts to match
choice elements are only made until a match is returned. When using choices to
control logical flow of the rule processing, take care to ensure that the least specific
match is placed last in the choice. Consider the following rules:
dog = “dog”
cat = “cat”
caterpiller = “caterpiller”
animal = dog / cat / caterpiller

Table 10. Input "caterpillar"

Rule Sub rule Sub input Indicates... Match data

animal MATCH cat

dog dog NO_MATCH N/A

cat caterpillar MATCH cat

caterpillar N/A NOT_TRIED N/A

In this example, the cat rule was processed before the caterpillar rule, and
because the input starts with cat the rule returns a match. To correct this matching
problem, ensure that the caterpillar rule is processed before the cat rule:
animal = caterpiller / dog / cat

Chapter 3. Generic TCP Decoder 53

Table 11. Input "cat"

Rule Sub rule Sub input Indicates... Match data

animal MATCH cat

caterpillar cat NO_MATCH N/A

dog cat NO_MATCH N/A

cat cat MATCH cat

Table 12. Input "caterpillar"

Rule Sub rule Sub input Indicates... Match data

animal MATCH caterpillar

caterpillar caterpillar MATCH caterpillar

cat N/A NOT_TRIED N/A

any_other_animal N/A NOT_TRIED N/A

Meta rules
The rule engine supports meta rules so that it can process request and response
data from the Web Response Time Module API. These rules do not consume input
data, but are used to identify the origin of the data and to match specific
conditions. All meta rules are defined as prose values (values enclosed in angle
brackets <>). There are two types of meta rules.

Flow control

Instructs the rule engine of special considerations for a rules data source. The
normal source of input data for a rule is from a rules parent. Flow control meta
rules provide alternative data sources for a rule. Flow control meta rules must
appear as the first element of a rules definition, and a single rule may not use
more than one flow control meta rule.
v Supported flow control meta rules are:

– <ENTRYPOINT>

Declares the rule that contains it to be the entry point for the rule engine.
This is the first rule to be processed when a new protocol session is identified.
Entrypoint rules do not have a datasource, and therefore may not reference
rule elements that expect to have parent input data. There must be only one
rule in the configuration that is defined as the entrypoint.

– <FROM REQUEST_STREAM>

Declares that the rule that contains it will read data from the request data
stream provided by the Web Response Time Module API. Each time that a
rule that has this meta rule indicates a match, the matched data is consumed
from the request stream.

– <FROM RESPONSE_STREAM>

Declares that the rule that contains it will read data from the response data
stream provided by the Web Response Time Module API. Each time that a
rule that has this meta rule indicates a match, the matched data is consumed
from the response stream.

– <FROM RULE rulename>

Declares that the rule that contains it will read data from matches indicated
by the specified rulename. Any time that the specified rule matches, the data

54 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

matched is as the input to this rule. Processing of this rule completes before
the rule that triggered the match continues.

Matching meta rules

Rules that can indicate matches without input data. Matches are made against
specific conditions. Matching meta rules may be used wherever a normal rule
element is valid, and are also valid for use in the entrypoint rule. Matching meta
rules do not require and do not consume input data. Valid matching meta rules
are:
v <END_OF_REQUESTS>

Returns a match if the request data stream is complete, and all of the data from
the request stream has been consumed. Otherwise it does not return a match.

v <END_OF_RESPONSES>

Returns a match if the response data stream is complete, and all of the data from
the request stream has been consumed. Otherwise it does not return a match.

v <REMAINING BUFFER>

Returns a match against any data remaining in the parent buffer. If there is no
data remaining in the buffer, the rule returns a match of zero length.

v <MATCHED rulename>repeatedrule

May be used instead of a number for an exact repetition. The repetition length is
defined by the value of the last match that occurred for the rule specified as
rulename. For example:
classnamelength = <BIG ENDIAN>2OCTET ; Length is stored as network byte
order short
classname = <MATCHED classnamelength>OCTET

If the rule specified as rulename did not match, the repetition returns a zero
length match.

Interpretation meta rules

Interpretation meta rules affect the interpretation of binary data. The interpreted
data is applied when the containing rule is used as a length variable for the
<MATCHED> repetition rule. Interpretation meta rules must appear as the first rule in
a rules definition. Supported interpretation rules include the following:
v <BIG ENDIAN>

Data matched by this rule is in big endian byte ordering
v <NETWORK>

Data matched by this rule is in network byte order (synonym for BIG ENDIAN)
v <LITTLE ENDIAN>

Data matched by this rule is in little endian byte ordering.

Chapter 3. Generic TCP Decoder 55

Built in rules
RFC 5234 defines several core rules.

The Generic TCP Module makes the following rules available for use in rule
definitions:
ALPHA = %x41-5A / %x61-7A ; Characters A-Z / a-z
BIT = "0" / "1"
CHAR = %x01-7F ; any 7-bit US-ASCII character

; excluding NULL
CR = %x0D ; carriage return
CRLF = CR LF ; Internet standard newline
CTL = %x00-1F / %x7F ; controls
DIGIT = %x30-39 ; Characters 0-9
DQUOTE = %x22 ; Double Quote (“)
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
HTAB = %x09 ; horizontal tab
LF = %x0A ; linefeed
LWSP = *(WSP / CRLF WSP) ; Linear whitespace
OCTET = %x00-FF ; any single byte
SP = %x20
VCHAR = %x21-7E ; printable characters
WSP = SP / HTAB ; white space

Actions on rule matches:

Each rule may have an accompanying action. An action is a script that executes
when the rule is matched, and is defined in the module's configuration XML file.

Defining actions

To define an action, create a configuration section like <section
name="action:$RULE">, where $RULE is the name of a rule. For example:
<module>
<name>generic</name>
...
<config>
<section name="action:MyRule">
set_context("ctxname", MATCH)
send_data()
</section>
</config>
</module>

Actions are Lua scripts, and have access to the full Lua standard library. You can
do additional processing and manipulation on the extracted context before sending
transactions. Use the examples in this section for simple scripts, or go to
http://www.lua.org/ for the full syntax and standard library documentation.

Action API

An API is defined for actions to call to generate transaction data. The functions are
described below:
v get_context(name) - gets the value of the context item with the specified name

and value. The name must refer to a context item in the config file's output
context.

v set_context(name, value) - sets the value of the context item with the specified
name. The name may refer to a context item in the config file's input or output
context.

v send_data() - sends a complete transaction datum.

56 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

http://www.lua.org/

In addition to the functions specified above, there are two built in identifiers
provided by the framework:
v MATCH - the value of the matched rule that triggered the action
v session - a unique object for the TCP session, which may be used to store state

There is an additional function for logging from the match callbacks:
v log_msg(text) - output text to the log
v *Optional* - the message is logged at the STATE log level

Action execution

Actions are executed as rules are matched. There are several important things to
consider in your actions:
v A sub-rule may be matched even though its enclosing rule is not. Thus, you

should defer any "send_data" calls until you know that a complete transaction is
matched.

v Calls to set_context may be ineffective if the accompanying send_data is not
called from within the same action. This depends on when packets are observed
by the module. Accumulate context in the "session" object, and then
set_context and send_data in the rule that marks the end of a transaction.

Example - decoding FTP protocol
The FTP protocol is a text based protocol that uses a similar request and response
structure to other internet protocols such as HTTP and SMTP. RFC 959 defines the
FTP protocol, and there are numerous extensions to the protocol defined in
subsequent RFCs.

Begin to define this protocol by firstly identifying the basic request and response
flow. A normal FTP session begins with the client initiating a TCP connection to
the FTP server. The FTP server sends the client a connection greeting, usually
identifying the server and indicating that the client may proceed to send
commands. From then on, the protocol is a series of requests from the client and
responses from the server.

Requests to the server are simple strings terminated with a CRLF sequence.
Responses from the server may be either single line response, with three digits
followed by a space, followed by a text string terminated with a CRLF sequence,
or they may be a multiline response, with three digits followed by a dash ('-')
followed by one or more text lines terminated with a CRLF sequence, followed by
a normal single line response.

Express this as a set of rules as follows:
1. Define an entrypoint to define the general flow:

FTP_Session = <ENTRYPOINT> FTP_Banner *FTP_Transaction <END_OF_RESPONSES>

This rule indicates that it is the entrypoint for the engine. The rule logic is a
sequence. It starts with an FTP_Banner, then has 0 or more FTP_Transactions
and is completed when there are no more responses.

2. Define the rule elements.
v The FTP_Banner is the same format as the response to a client request, so

define this as:
FTP_Banner = FTP_ResponseLine

Chapter 3. Generic TCP Decoder 57

An FTP Transaction represents a single client request and server response:
FTP_Banner = FTP_RequestLine FTP_ResponseLine

v Continue defining rules. First, the FTP_RequestLine which is a string
terminated by a CRLF. To represent this, define:
FTP_RequestLine = *NonCRLFCharacter CRLF
NonCRLFCharacter = %x00-09 / %x0b-0c / %x0e-ff

That is, the FTP_RequestLine is a sequence. The first element of the sequence
is a repetition of any number of characters that are not CR or LF. The second
element is the CRLF itself. The definition of NonCRLFCharacter may be a little
lenient, as the protocol typically uses ASCII characters. The important fact is
that it excludes the CR(0x0d) and LF(0x0a) characters.

v Define a rule for CRLF terminated strings as they are detected often:
CRLFTerminatedString = *NonCRLFCharacter CRLF

v FTP_RequestLine also needs a source of data, so tell the engine to pass
request data into it:
FTP_RequestLine = <FROM REQUEST_STREAM> CRLFTerminatedString

v FTP Responses are more complicated, they may be either single or multi line
responses. These are read from the response stream:
FTP_ResponseLine = <FROM RESPONSE_STREAM>

FTP_SingleLineResponse / FTP_MutliLineResponse

v Continue defining rules until they are terminal:
FTP_SingleLineResponse = 3DIGIT SP CRLFTerminatedString
FTP_MultiLineResponse = 3DIGIT “-” CRLFTerminatedString

*CRLFTerminatedString
FTP_SingleLineResponse

To ensure that FTP_ResponseLine chooses the right response type, the responses
provide enough information to determine which it is. For it to match
FTP_SingleLineResponse, it must be 3 DIGITs followed by a space, followed by a
CRLF terminated string.

FTP_MultiLineResponse is 3 DIGITs followed by a dash. This rule uses the look
ahead functionality of repetitions. In this case data that would match
FTP_SingleLineResponse also matches CRLFTerminatedString. The look ahead
detects the FTP_SingleLineResponse and completes the repetition so it can be
processed.

This small set of rules is sufficient to process the FTP protocol. However, the
output is limited to the full requests and responses. Ideally, you want to identify
specific transactions and extract context data from them. To achieve this aim,
define some more rules that take data from the FTP_RequestLine and
FTP_ResponseLine rules.

Rather than creating a separate rule for single and multiline responses, create a
single rule that triggers from matches to FTP_SingleLineResponse. Because
FTP_MulitLineResponse uses the FTP_SingleLineResponse rule, the new rule is used
to match and extract the response code from the server responses.
FTP_ResponseCode = <FROM RULE FTP_SingleLineResponse> 3DIGIT

This rule needs only match the 3 digits. The match for FTP_ResponseCode contains
those 3 digits.

58 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Processing the requests requires some more processing. There are any number of
commands that the client could have sent, including commands that are not valid
for the FTP protocol. For this example, we will build rules that extract the
username that logged into the FTP server, and filenames for any file transfers.

Generally, FTP commands are in the format: command followed by an optional
parameter. The command and parameter are separated by a space.
FTP_Request = <FROM RULE FTP_RequestLine> FTP_Commands CRLF
FTP_Commands = FTP_USER_Command / FTP_RETR_Command

/ FTP_STOR_Command / FTP_Other_Command
FTP_USER_Command = “USER” SP FTP_Username
FTP_Username = *NonCRLFCharacter
FTP_STOR_Command = “STOR” SP FTP_Put_Filename
FTP_Put_Filename = *NonCRLFCharacter
FTP_RETR_Command = “RETR” SP FTP_Get_Filename
FTP_Get_Filename = *NonCRLFCharacter
FTP_Other_Command = *NonCRLFCharacter

These rules process the request line. If the request is a USER command, the
FTP_Username rule matches the parameter. Similar rules are defined for the
parameters of STOR and RETR. These rules are defined separately so that they can
have specific actions defined for them, rather than having one action that would
require extra logic to determine the command type.

The FTP_Other_Command rule matches the entire line for rules that are not of
interest. Either publish these, or silently ignore them.

Finally, do not expose user passwords. If you publish FTP_Other_Command, user
password may become visible. Add the PASS command to our list of commands to
avoid exposing passwords:
FTP_Commands = FTP_USER_Command / FTP_RETR_Command

/ FTP_STOR_Command / FTP_PASS_Command
/ FTP_Other_Command

FTP_PASS_Command = “PASS” SP *NonCRLFCharacter

Publishing context for FTP

Define actions to publish the matches to the Web Response Time Module API. For
this example, for each ftp transaction, publish the username (if the user has logged
in), the request type and the response code the server returned. Also inform the
Web Response Time Module API what the protocol is.
1. Define the context to publish:

<output>
<context>

<item>
<name>tcp.protocol</name>
<type>string</type>

</item>
<item>

<name>ftp.client.name</name>
<type>string</type>

</item>
<item>

<name>ftp.command</name>
<type>string<type>

</item>
<item>

<name>ftp.put.filename<name>
<type>string</type>

</item>

Chapter 3. Generic TCP Decoder 59

<item>
<name>ftp.get.filename</name>
<type>string<type>

</item>
<item>

<name>ftp.responsecode</name>
<type>string</type>

</item>
</context>

</output>

2. Associate actions with the FTP rules to populate this context:
<section name="action:FTP_Username">

session.command = "USER " .. MATCH
session.ctxname = "ftp.client.name"
session.ctxval = MATCH

</section>
<section name="action:FTP_Other_Command">

session.command = "ftp.command"
session.ctxname = "ftp.command"
session.ctxval = MATCH

</section>
<section name="action:FTP_Get_Filename">

session.command = "GET " .. MATCH
session.ctxname = "ftp.get.filename"
session.ctxval = MATCH

</section>
<section name="action:FTP_Put_Filename">

session.command = "PUT " .. MATCH
session.ctxname = "ftp.put.filename"
session.ctxval = MATCH

</section>
<section name="action:FTP_ResponseCode">

session.responsecode = MATCH
</section>
<ection name="action:FTP_Transaction">

set_context("tcp.protocol", "ftp")
set_context("ftp.command", session.command);
set_context(session.ctxname, session.ctxval)
set_context("ftp.responsecode", session.responsecode)
send_data()

</section>

For this example, the actions for matches on FTP_Username, FTP_Other_Command,
FTP_Get_Filename, FTP_Put_Filename, and FTP_ResponseCode store the value of the
match in the internal session storage.

The definition for FTP_Transaction is a Request followed by a Response, so when
the action is triggered for a match on FTP_Transaction, there are accumulated
matches from one of the request rules and from the response rule. The stored
values in the session storage are published through the Web Response Time
Module API and the transaction record is sent.

Full FTP configuration
<module>
<name>generic</name>
<filter>
<port>21</port>
</filter>
<input>
</input>
<output>

<context>
<item>

60 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

<name>tcp.protocol</name>
<type>string</type>

</item>
<item>

<name>ftp.client.name</name>
<type>string</type>

</item>
<item>

<name>ftp.command</name>
<type>string<type>

</item>
<item>

<name>ftp.put.filename<name>
<type>string</type>

</item>
<item>

<name>ftp.get.filename</name>
<type>string<type>

</item>
<item>

<name>ftp.responsecode</name>
<type>string</type>

</item>
</context>

</output>
<config>
<section name="rules">
<![CDATA[

NonCRLFCharacter = %x00-09 / %x0b-0c / %x0e-ff
; Matches any byte that isn’t CR or LF

CRLFTerminatedString = *NonCRLFCharacter CRLF
; Matches all non CRLF bytes, then CRLF

; Basic request flow
; This is the main ’loop’ for the session
FTP_Session = <ENTRYPOINT> FTP_Banner *FTP_Transaction <END_OF_RESPONSES>

FTP_Banner = FTP_ResponseLine
; The FTP Server greeting is really just a server

; response without a request

FTP_Transaction = FTP_RequestLine FTP_ResponseLine
; A transaction is a request followed by a response

; Request lines are read from the requestStream
FTP_RequestLine = <FROM REQUEST_STREAM> CRLFTerminatedString

; Response lines are read from the responseStream
; Responses may be single line or multi line responses
FTP_ResponseLine = <FROM RESPONSE_STREAM> FTP_SingleLineResponse /
FTP_MultiLineResponse
FTP_SingleLineResponse = 3DIGIT SP CRLFTerminatedString

; Single line response is nnn <message>

FTP_MultiLineResponse = 3DIGIT "-" CRLFTerminatedString
; Multi line response is nnn-<message>

*CRLFTerminatedString
; zero or more text lines

FTP_SingleLineResponse
; Terminated by a normal nnn <message>

; -
;
; Deeper decoding
;
; -

Chapter 3. Generic TCP Decoder 61

; Response Handling
; FTP_ResponseCode processes matches of the FTP_SingleLineResponse
; FTP_SingleLineResponse will match on a single line response, or the last line
; of a multi line response
FTP_ResponseCode = <FROM RULE FTP_SingleLineResponse> 3DIGIT

; All we want is the first 3 digits

; Request Handling
; FTP_Request processes matches of the FTP_RequestLine rule
FTP_Request = <FROM RULE FTP_RequestLine> FTP_Commands CRLF
; Strip the CRLF

FTP_Commands = FTP_USER_Command
/ FTP_RETR_Command
/ FTP_STOR_Command
/ FTP_PASS_Command
/ FTP_Other_Command

FTP_USER_Command = "USER" SP FTP_Username
; We could use 1*WSP to account for multiple spaces

FTP_Username = *NonCRLFCharacter
; We are separating the username parameter from the command so that we can expose
; it as separate context

FTP_STOR_Command = "STOR" SP FTP_Put_Filename
FTP_Put_Filename = *NonCRLFCharacter

FTP_RETR_Command = "RETR" SP FTP_Get_Filename
FTP_Get_Filename = *NonCRLFCharacter

; FTP_PASS_Command and FTP_Other_Command are identical rules - however
; FTP_PASS_Command is referenced before FTP_Other_Command, so it will
; match first. This will prevent the FTP_Other_Command action handler
; exposing passwords in the context.

FTP_PASS_Command = "PASS" SP *NonCRLFCharacter

FTP_Other_Command = *NonCRLFCharacter

]]>
</section>
<section name="action:FTP_Username">

session.command = "USER " .. MATCH
session.ctxname = "ftp.client.name"
session.ctxval = MATCH

</section>
<section name="action:FTP_Other_Command">

session.command = "ftp.command"
session.ctxname = "ftp.command"
session.ctxval = MATCH

</section>
<section name="action:FTP_Get_Filename">

session.command = "GET " .. MATCH
session.ctxname = "ftp.get.filename"
session.ctxval = MATCH

</section>
<section name="action:FTP_Put_Filename">

session.command = "PUT " .. MATCH
session.ctxname = "ftp.put.filename"
session.ctxval = MATCH

</section>
<section name="action:FTP_ResponseCode">

session.responsecode = MATCH
</section

<section name="action:FTP_Transaction">
set_context("tcp.protocol", "ftp")
set_context("ftp.command", session.command);

62 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

set_context(session.ctxname, session.ctxval)
set_context("ftp.responsecode", session.responsecode)
send_data()

</section>
</config>
</module>

Chapter 3. Generic TCP Decoder 63

64 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Appendix A. Transport address format

This appendix provides definitions of the available addressing schemes for
connecting an instrumented application to a Transaction Collector.

The addressing format that Transaction Tracking API uses is modular - multiple
transports may be available depending on which platform the Transaction Tracking
API is running. A subset of transports is guaranteed to be available on all
platforms. Each transport has a unique string associated with it.

The addresses used by Transaction Tracking API are always prefixed by the unique
identifier of the transport to be used, followed by a colon (:). The remainder of the
address following the colon, is interpreted in a module-dependant manner as
follows:
<module>:<address>

The following sections describe each module and the formats they define for their
addresses.

TCP/IP module (tcp)

The TCP/IP transport supports both IPv4 and IPv6 (where the platform supports
IPv6). The module's unique identifier is tcp. This format is not supported on z/OS.

Addresses for this module follow a URL-like format:
tcp:host:port

To allow the use of IPv6 addresses in this format, the host must be enclosed in
square brackets (as is done in URLs). For example, to connect to port 5455 on the
IPv6 local host, specify the following address:
tcp:[::1]:5455

The default TCP/IP value is tcp:127.0.0.1:5455.

Subsystem module (ssn)

The subsystem format is supported only on z/OS, and specifies the four character
subsystem name of the destination Transactions Container.

Addresses for this module are:
ssn:subsystem

For example, ssn:SS01.

The default SSN value is ssn:CYTZ. All other fields in the Configuration Block are
ignored for Subsystem users.

© Copyright IBM Corp. 2008, 2015 65

66 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Appendix B. Return codes

Transaction Tracking API functions return values in a return code – a fullword
area.

The return codes are:
v 0 Operation successful
v 10 - 30: z/OS Related Error (returned from calls to CYTATRAK and

CYTABLOK):
– 10 - Container subsystem not found
– 11 - Invalid Configuration Token passed
– 12 - Container subsystem inactive
– 13 - Dispatcher unavailable
– 14 - No more storage available
– 15 - No more ASIDs in ASID pool
– 16 - No Couriers available
– 17 - System Error Occurred
– 18 - Invalid API request
– 19 - ASID table full, no more ASIDs can be tracked. Only 100 address spaces

can be tracked by each Container. Start another Container and configure some
of your data collectors to use this Container.

– 20 - Free chain anchor is null. The CADS is full. The Container may not be
able to keep up with the incoming work load. Start another Container and
configure some of your data collectors to use this Container.

– 21 - Not used
– 22 - Free block is flagged as in use.
– 23 - Can not find ASID for tracked event
– 24 - CBH pointer in ASID block is null
– 25 - Event block has been queued but not yet processed by the Container.
– 26 - CADS not available
– 27 - Block has already been queued to the Container.
– 28 - Block is already free.
– 29 - QELM header is bad.
– 30 - Block being freed is on the active queue.

v 100-200 Event Record Invalid:

– 100 - Internal Error
– 101 - Invalid event block address
– 102 - Invalid event type
– 103 - Invalid timestamp
– 104 - Invalid transaction ID length (not positive)
– 105 - Invalid transaction ID flag
– 106 - Invalid transaction ID address
– 110 - Invalid horizontal ID length (not positive)
– 111 - Invalid horizontal ID flag

© Copyright IBM Corp. 2008, 2015 67

– 112 - Invalid horizontal caller type
– 113 - Invalid horizontal ID address
– 120 - Invalid vertical ID length (not positive)
– 121 - Invalid vertical ID flag
– 122 - Invalid vertical caller type
– 123 - Invalid vertical caller address
– 130 - Invalid Name string address in transaction list
– 131 - Invalid Value string address in transaction list
– 132 - Invalid Value string length in transaction list
– 133 - Invalid Name Value flag in transaction list
– 134 - Invalid Name/Value pair address in transaction list
– 140 - Invalid Name string address in horizontal stitch list
– 141 - Invalid Value string address in horizontal stitch list
– 142 - Invalid Value string length in horizontal stitch list
– 143 - Invalid Name Value flag in horizontal stitch list
– 144 - Invalid Name/Value pair address in horizontal stitch list
– 150 - Invalid Name string address in vertical stitch list
– 151 - Invalid Value string address in vertical stitch list
– 152 - Invalid Value string length in vertical stitch list
– 153 - Invalid Name Value flag in vertical stitch list
– 154 - Invalid Name/Value pair address in vertical stitch list
– 160 - Invalid Name string address in horizontal context list
– 161 - Invalid Value string address in horizontal context list
– 162 - Invalid Value string length in horizontal context list
– 163 - Invalid Name Value flag in horizontal context list
– 164 - Invalid Name/Value pair address in horizontal context list
– 170 - Invalid Name string address in vertical context list
– 171 - Invalid Value string address in vertical context list
– 172 - Invalid Value string length in vertical context list
– 173 - Invalid Name Value flag in vertical context list
– 174 - Invalid Name/Value pair address in vertical context list

68 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Appendix C. Samples

Code examples.

z/OS samples provided

On z/OS, examples can also be found in the SCYTSAMP file, as described in
Table 13.

Table 13. Samples in the SCYTSAMP library

Language Member Description

HLASM CYTAASM Sample HLASM program to send events.

CYTAINIT Macro to call the CYTA_init function.

CYTATRAK Macro to call the CYTA_track function.

CYTATOK Macro to call the CYTA_token function.

CYTAEVNT Macro to map an event.

CYTACFG Macro to map a Configuration Block.

CYTANVAL Macro to map a Name/Value pair entry.

CYTANV Macro to create a Name/Value pair entry.

CYTADFV Macro to create Name/Value pairs to specify the
minimal Vertical Context for an event.

COBOL CYTABCFG COBOL definitions for a Configuration Block.

CYTABCON COBOL constants required to use the Transaction
Tracking API.

CYTABEVT COBOL definitions for an event.

CYTABNV COBOL definitions for a Name/Value pair entry.

CYTABSMP Sample COBOL program to send events.

C CYTACSMP Sample C program to send events. C header file
definitions are in the SCYTH dataset.

Java CYTAJSMP Sample Java program to send events.

PL/I CYTAPCFG PL/I definitions for a Configuration Block.

CYTAPEVT PL/I definitions for an event.

CYTAPNV PL/I definitions for a Name/Value pair entry.

CYTAPSMP Sample PL/I program to send events.

All CYTASIDE Binder Side Deck required by dynamic callers.

C
/*==

Includes
===*/

#pragma runopts(POSIX(ON))
#pragma runopts(TRAP(ON,SPIE))
#include <cytapi.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

© Copyright IBM Corp. 2008, 2015 69

/*==
Mainline Code
== */
int main(int argc, char **argv)
{

/* ---
Variables
--- */
int rc; /* Return code from functions */
int hlink1; /* Store numeric Hor Link IDs */
/* --- Area for Communications Configuration Block -------------- */
cyta_config_t configblk; /* Configuration block */
/* --- Area for Event Block ------------------------------------- */
cyta_event_t eventblk; /* Event block */
/* --- Area for ’Standard’ Vertical Context Name/Value Pairs ---- */
cyta_values_list_t vert1, vert2, vert3, vert4; /* Vertical Context*/
/* ---

Put together ’standard’ Vertical Contexts

These are the minimum Vertical Context needed to display
event in ITCAM for Txns workspaces. We need:

HOST - Host Name. Normally Sysplex/SMFID
COMPONENT - Component - what we are running under -eg.

BATCH, STC, IMS, CICS, WAS, TSO.
APPLICATION - Usually Job or Started Task Name
TRANSACTION - The transaction we are running

In your program, you will modify the values to suit your
installation, however the names of the name/value pairs should
not be changed
--- */

/* --- Hostname -- */
memset(&vert1, 0, sizeof(vert1));
static char *server = "Sysplex/Host";
static char *server_lbl = "ServerName";
vert1.name = server_lbl;
vert1.value = server;
vert1.size = strlen(server);
/* --- ComponentName-- */
memset(&vert2, 0, sizeof(vert2));
static char *component = "STC";
static char *component_lbl = "ComponentName";
vert1.next = &vert2;
vert2.name = component_lbl;
vert2.value = component;
vert2.size = strlen(component);
/* --- ApplicationName --- */
memset(&vert3, 0, sizeof(vert3));
static char *application = "Application";
static char *application_lbl = "ApplicationName";
vert2.next = &vert3;
vert3.name = application_lbl;
vert3.value = application;
vert3.size = strlen(application);
/* --- Transaction (no EBCDIC -> ASCII Translation) -------------- */
memset(&vert4, 0, sizeof(vert4));
static int transaction = 254; /* Value is a number: 254 */
static char *transaction_lbl = "TransactionName";
vert3.next = &vert4;
vert4.name = transaction_lbl;
vert4.value = &transaction;
vert4.size = sizeof(transaction);
vert4.flags = CYTA_VALUELIST_FLAG_VALUE_RAW;/* No translation */
/* ---

Get Configuration Token
The server field specifies where the ITCAM for Transactions
events are to be sent. It must be of the form:

70 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

SSN:sub
Where sub is the 4 character subsystem name used by the ITCAM
for Transactions Collector Started Task

--- */
memset(&configblk, 0, sizeof(configblk)); /* Zero config block */
configblk.server = "SSN:CYTZ"; /* Send events to CYTZ subsys */
rc = CYTA_init(&configblk); /* Get the token */
printf("(CYTACSMP) CYTAINIT Return Code=%d\n", rc);
/* ---
Send a ’Started’ Event

We don’t specify a timestamp, so the time now is automatically
inserted.

--- */
memset(&eventblk, 0, sizeof(eventblk)); /* Zero event block */
eventblk.type = CYTA_STARTED_EVENT; /* Started Event */
eventblk.vertical_context = &vert1; /* Vertical Context Addr */
eventblk.vertical_id.link_id = "CYTACSMP"; /* Vertical Link ID */
eventblk.vertical_id.link_id_size = 8; /* Link ID Length */
rc = CYTA_track(&configblk, &eventblk); /* Send the event */
printf("(CYTACSMP) STARTED Event Return Code=%d\n", rc);
/* ---
Send an Outbound Event
(we only need to specify changed fields - all other fields remain
from the Started event)
-- */

eventblk.type = CYTA_OUTBOUND_EVENT; /* Started Event */
eventblk.horizontal_id.link_id = "Hlink Value";/* Horizontal ID */
eventblk.horizontal_id.link_id_size = 11;/* Link ID Length */
rc = CYTA_track(&configblk, &eventblk); /* Send the event */
printf("(CYTACSMP) OUTBOUND Event Return Code=%d\n", rc);
/* ---
Send an Inbound Finished Event
We change the Horizontal Link to the incoming Link ID - this
is the ID specified by the application sending the response
in its OUTBOUND event. In this case, the Link ID is a number,
so we MUST set the flag so it is NOT translated from EBCDIC to
ASCII.
-- */

eventblk.type = CYTA_INBOUND_FINISHED_EVENT; /* Event Type */
hlink1 = 56; /* Horizontal Link ID=56 */
eventblk.horizontal_id.link_id = &hlink1 /* Horizontal ID */
eventblk.horizontal_id.link_id_size = 4; /* Link ID Length */
eventblk.horizontal_id.flags = CYTA_ASSOCIATION_FLAG_LINK_RAW;

/* Do NOT xlate from EBCDIC */
rc = CYTA_track(&configblk, &eventblk); /* Send the event */
printf("(CYTACSMP) INBOUND FINISHED Event Return Code=%d\n", rc);

} /* main */

COBOL
CBL RENT,PGMNAME(LM),LIB,NODYNAM,NODLL

* ===
*
* Identification Division
*
* ===
IDENTIFICATION DIVISION.

PROGRAM-ID. "CYTABSMP".

* ===
*
* Environment Division
*
* ===
ENVIRONMENT DIVISION.

Appendix C. Samples 71

* ===
*
* Data Division
*
* ===
DATA DIVISION.
Working-Storage Section.
* ---
* Constants Needed to Use the ITCAM for Txns API
* ---
COPY CYTABCON.

* ---
* Area to hold our event block
* ---
COPY CYTABEVT.

* ---
* Area to hold our Configuration Block
* ---
COPY CYTABCFG.

* ---
* Area for ’Standard’ 4 Vertical Context Name/Value pairs.
* These are the minimum Vertical Context needed to display
* event in ITCAM for Txns workspaces
* HOST - Host Name. Normally Sysplex/SMFID
* COMPONENT - Component - what we are running under -eg.
* BATCH, STC, IMS, CICS, WAS, TSO.
* APPLICATION - Usually Job or Started Task Name
* TRANSACTION - The transaction we are running
*
* Each has three variables:
* xxx-LBL - the label of the Name/Value Pair, ending in
* nulls.
* xxx - area to hold the actual value
* xxx-NV - area to hold the name/value pair
*
* In your program, you will modify the values to suit your
* installation, however the labels should not be changed
* ---
01 HOST-LBL pic x(11) value z"ServerName".
01 HOST pic x(12) value "Sysplex/Host".
01 HOST-NV pic x(16).

01 COMPONENT-LBL pic x(14) value z"ComponentName".
01 COMPONENT pic x(3) value "STC".
01 COMPONENT-NV pic x(16).

01 APPLICATION-LBL pic x(16) value z"ApplicationName".
01 APPLICATION pic x(11) value "Application".

01 APPLICATION-NV pic x(16).

01 TRANSACTION-LBL pic x(16) value z"TransactionName".
01 TRANSACTION pic s9(9) binary value 254.
01 TRANSACTION-NV pic x(16).

* ---
* Outbound and Inbound Horizontal Link IDs
* For your organisation, specify unique values here. But
* for this example, constant values will be used
* HLINK-OUT - Outgoing Horizontal Link (string)
* HLINK-IN - Incoming Horizontal Link (number)
* ---
01 HLINK-OUT pic x(11) value ’HLINK VALUE’.
01 HLINK-IN pic s9(9) binary value 56.

72 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

* ---
* Vertical Link ID
* This value should be unique for every work unit. We will
* use a constant in this example.
* ---
01 VLINK pic x(8) value ’CYTABSMP’.

* ---
* String Specifying Destination for Events
* This must be of the form SSN:sub - sub is the ITCAM for
* Transactions Container subsystem.
* ---
01 SERVER pic x(8) value ’SSN:CYTZ’.

* ---
* Definition used to insert a one byte length field
* LINK-LEN - Halfword Link Name length
* LINK-LEN-BYTE - One byte Link Name length
* ---
01 LINK-LEN pic s9(3) binary.
01 LINK-LEN-STR redefines LINK-LEN.

02 filler pic x(1).
02 LINK-LEN-BYTE pic x(1).

* ---
* Fullword to hold return code from CYTA_track
* ---
01 RC pic S9(9) comp.

Linkage Section.
* ---
* Map Name/Value Pair Entry
* ---
COPY CYTABNV.

* ===
*
* Procedure Division
*
* ===
PROCEDURE DIVISION.

DISPLAY "(CYTABSMP) Entry".

* ---
* Initialize Our Event Block
* ---

INITIALIZE CYTA-EVENT REPLACING ALPHANUMERIC BY x"00".

* ---
* Setup a Name/Value Pair for Host
* 1. Address the Name/Value pair
* 2. Initialise the Name/Value pair to nulls
* 3. Set the Name pointer
* 4. Set the Value pointer
* 5. Set the Value length
* ---

SET ADDRESS OF CYTA-NV-LIST TO ADDRESS OF HOST-NV.
INITIALIZE CYTA-NV-LIST REPLACING ALPHANUMERIC BY x"00".
SET CYTA-NV-NAME-POINTER TO ADDRESS OF HOST-LBL.
SET CYTA-NV-VALUE-POINTER TO ADDRESS OF HOST.
MOVE LENGTH OF HOST TO CYTA-NV-VALUE-LENGTH.

* ---
* Setup a Name/Value Pair for Component
* 1. Host Name/Value pair chains to Component Name/Value pair
* 2. (steps as for Host Name/Value Pair)

Appendix C. Samples 73

* 7. Stop EBCDIC->ASCII transaction of Department ID (as it
* is a number, not a string)
* ---

SET CYTA-NV-NEXT-POINTER TO ADDRESS OF COMPONENT-NV.
SET ADDRESS OF CYTA-NV-LIST TO ADDRESS OF COMPONENT-NV.
INITIALIZE CYTA-NV-LIST REPLACING ALPHANUMERIC BY x"00".
SET CYTA-NV-NAME-POINTER TO ADDRESS OF COMPONENT-LBL.
SET CYTA-NV-VALUE-POINTER TO ADDRESS OF COMPONENT.
MOVE LENGTH OF COMPONENT TO CYTA-NV-VALUE-LENGTH.

* ---
* Setup a Name/Value Pair for Application
* ---

SET CYTA-NV-NEXT-POINTER TO ADDRESS OF APPLICATION-NV.
SET ADDRESS OF CYTA-NV-LIST TO ADDRESS OF APPLICATION-NV.
INITIALIZE CYTA-NV-LIST REPLACING ALPHANUMERIC BY x"00".
SET CYTA-NV-NAME-POINTER TO ADDRESS OF APPLICATION-LBL.
SET CYTA-NV-VALUE-POINTER TO ADDRESS OF APPLICATION.
MOVE LENGTH OF APPLICATION TO CYTA-NV-VALUE-LENGTH.

* ---
* Setup a Name/Value Pair for Transaction
* Note that the Transaction Value is a number, so we
* set the flags so that NO EBCDIC to ASCII translation
* will be performed.
* ---

SET CYTA-NV-NEXT-POINTER TO ADDRESS OF TRANSACTION-NV.
SET ADDRESS OF CYTA-NV-LIST TO ADDRESS OF TRANSACTION-NV.
INITIALIZE CYTA-NV-LIST REPLACING ALPHANUMERIC BY x"00".
SET CYTA-NV-NAME-POINTER TO ADDRESS OF TRANSACTION-LBL.
SET CYTA-NV-VALUE-POINTER TO ADDRESS OF TRANSACTION.
MOVE LENGTH OF TRANSACTION TO CYTA-NV-VALUE-LENGTH.
MOVE CYTA-DONT-TR-VALUE-FROM-EBCDIC TO CYTA-NV-FLAGS.

* ---
* Call CYTA_init to get Configuration Token
* 1. Specify server string - if this is omitted, the
* default is: SSN:CYTZ
* 2. Call CYTA_init
* ---

SET CYTA-CFG-SERVER TO ADDRESS OF SERVER.

CALL "CYTA_init" USING CYTA-CFG-BLOCK RETURNING RC.
DISPLAY "(CYTABSMP) CYTA_init Return Code=" RC.

* ---
* Send a STARTED event
* 1. Move in event type
* 2. Move in Vertical link ID
* 3. Move in Vertical link length
* 4. (Don’t specify time, so it is automatically inserted)
* 5. Specify Vertical Context that we’ve built
* 6. Call the API (statically linked).
* ---

MOVE CYTA-STARTED TO CYTA-E-TYPE.
SET CYTA-E-VERT-LINK-ID TO ADDRESS OF VLINK.
MOVE LENGTH OF VLINK TO LINK-LEN.
MOVE LINK-LEN-BYTE TO CYTA-E-VERT-LINK-LENGTH.
SET CYTA-E-VERT-CONTEXT-LIST TO ADDRESS OF HOST-NV.

CALL "CYTA_track" USING CYTA-CFG-BLOCK CYTA-EVENT
RETURNING RC.

DISPLAY "(CYTABSMP) STARTED Event Return Code=" RC.

* ---
* Send an OUTBOUND event
* 1. Move in event type

74 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

* 2. (No need to change Vertical Link or Context)
* 3. Specify Horizontal Link (program at other end will
* need to specify this on it’s INBOUND event).
* 4. Specify Horizontal Link length
* 5. Call the API
* ---

MOVE CYTA-OUTBOUND TO CYTA-E-TYPE.
SET CYTA-E-HORZ-LINK-ID TO ADDRESS OF HLINK-OUT.
MOVE LENGTH OF HLINK-OUT TO LINK-LEN.
MOVE LINK-LEN-BYTE TO CYTA-E-HORZ-LINK-LENGTH.

CALL "CYTA_track" USING CYTA-CFG-BLOCK CYTA-EVENT
RETURNING RC.

DISPLAY "(CYTABSMP) OUTBOUND Event Return Code=" RC.

* ---
* Send an INBOUND FINISHED event
* 1. Move in event type
* 2. (No need to change Vertical Link or Context)
* 3. Specify Horizontal Link (program at other end will
* need to specify this on it’s OUTBOUND event).
* 4. Specify Horizontal Link length
* 5. As Horizontal Link is a number, stop conversion from
* EBCDIC
* 6. Call the API
* ---

MOVE CYTA-INBOUND-FINISHED TO CYTA-E-TYPE.
SET CYTA-E-HORZ-LINK-ID TO ADDRESS OF HLINK-IN.
MOVE LENGTH OF HLINK-IN TO LINK-LEN.
MOVE LINK-LEN-BYTE TO CYTA-E-HORZ-LINK-LENGTH.
MOVE CYTA-DONT-TR-FROM-EBCDIC TO CYTA-E-HORZ-LINK-FLAGS.

CALL "CYTA_track" USING CYTA-CFG-BLOCK CYTA-EVENT
RETURNING RC.

DISPLAY "(CYTABSMP) INBOUND FINISHED Event Return Code=" RC.

* ---
* And we’re done
* ---

GOBACK.

Java
import ttapi4j.ServerFactory;
import ttapi4j.Server;
import ttapi4j.Event;
import ttapi4j.InstanceID;

public class CYTAJSMP
{

public static void main(String[] args) throws Exception
{

System.out.println("(CYTAJSMP) Entry");

/* --- Get Configuration Token - Sending to Subsys CYTZ ---- */
Server s = ServerFactory.getServer("ssn:CYTZ");

/* --- Create Started Event -------------------------------- */
Event e = s.createEvent();
e.setType(Event.Type.STARTED);
e.getVerticalID().setLinkID("CYTAJSMP");
e.getVerticalContext().put("ServerName","Sysplex/Host");
e.getVerticalContext().put("ComponentName", "USS Shell");
e.getVerticalContext().put("ApplicationName", "Application");
e.getVerticalContext().put("TransactionName", "CYTAJSMP");
s.track(e);

Appendix C. Samples 75

/* --- Create Outbound Event ------------------------------- */
e.getHorizontalID().setLinkID("Hlink Value");
e.setType(Event.Type.OUTBOUND);
s.track(e);

/* --- Create Inbound Finished Event ----------------------- */
e.setType(Event.Type.INBOUND_FINISHED);
s.track(e);

/* --- Cleanup and Exit ------------------------------------- */
s.close();
System.out.println("(CYTAJSMP) Exit");

}
}

PL/I
%PROCESS Limits(Extname(15)) Source Arch(1);
%PROCESS Default(Linkage(Optlink) Nullsys);
%PROCESS Margins(2,72) Rules(IBM) System(MVS);
CYTAPSMP: Procedure Options(main);

/*===

Storage Definitions

==*/
/* ---

Include Structures for ITCAM for Transactions
--- */

%include CYTAPEVT;
%include CYTAPCFG;
%include CYTAPNV;

/* ---
Declarations for ’Standard’ 4 Vertical Context Name/Value pairs.

These are the minimum Vertical Context needed to display
an event in ITCAM for Txns workspaces:

Host - Host Name. Normally Sysplex/SMFID
Component - Component - what we are running under, like:

BATCH, STC, IMS, CICS, WAS, or TSO.
Application - Usually Job or Started Task Name
Transaction - The transaction we are running

We’re defining three variables each:
xxxlbl - the label of the Name/Value Pair, ending in

nulls.
xxxnam - area to hold the actual value
xxxaddr - address of name/value pair

In your program, you will modify the values to suit your
installation, however the labels should not be changed

--- */
Dcl hostaddr Pointer;
Dcl hostlbl Char(11) Varyingz Init(’ServerName’);
Dcl hostnam Char(12) Init(’Sysplex/Host’);

Dcl compaddr Pointer;
Dcl complbl Char(14) Varyingz Init(’ComponentName’);
Dcl compnam Char(3) Init(’STC’);

Dcl appladdr Pointer;
Dcl appllbl Char(16) Varyingz Init(’ApplicationName’);
Dcl applnam Char(11) Init(’Application’);

Dcl tranaddr Pointer;

76 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Dcl tranlbl Char(16) Varyingz Init(’TransactionName’);
Dcl trannam Fixed(32) Binary Unsigned Init(254);

/* ---
Outbound and Inbound Horizontal Link IDs

For your organisation, specify unique values here. But
for this example, constant values will be used
hlinkout - Outgoing Horizontal Link (string)
hlinkin - Incoming Horizontal Link (number)

--- */
Dcl hlinkout Char(11) Init("Hlink Value");
Dcl hlinkin Fixed(32) Binary Unsigned Init(56);

/* ---
Vertical Link ID

This value should be unique for every work unit. We will
use a constant in this example.

--- */
Dcl vlink Char(8) Init("CYTAPSMP");

/* ---
Communications Server

This string specifies where the ITCAM for Transactions Events
are to be sent. It must be of the form:

SSN:sub
Where sub is the 4 character subsystem name used by the ITCAM
for Transactions Collector Started Task

--- */
Dcl server Char(8) Init("SSN:CYTZ");

/* ---
Area that will hold Event Block and all Name/Value Pairs
--- */

Dcl stgarea Area; /* stgarea is 1000 bytes long */

/*===

Main Program

==*/

/* ---
Setup Name/Value Pair for Host
--- */

Allocate cytanval In(stgarea); /* Allocate storage */
hostaddr = cytanvalp; /* Save the address */
cytannam = Addr(hostlbl); /* Name */
cytanvl = Addr(hostnam); /* Value */
cytanvll = Length(hostnam); /* Value Length */

/* ---
Setup Name/Value Pair for Component
--- */

Allocate cytanval In(stgarea); /* Allocate storage */
compaddr = cytanvalp; /* Save the address */
cytannam = Addr(complbl); /* Name */
cytanvl = Addr(compnam); /* Value */
cytanvll = Length(compnam); /* Value Length */
hostaddr->cytannxt = compaddr; /* Chain off Host Pair */

/* ---
Setup Name/Value Pair for Application
--- */

Allocate cytanval In(stgarea); /* Allocate storage */
appladdr = cytanvalp; /* Save the address */
cytannam = Addr(appllbl); /* Name */
cytanvl = Addr(applnam); /* Value */

Appendix C. Samples 77

cytanvll = Length(applnam); /* Value Length */
compaddr->cytannxt = appladdr; /* Chain off Host Pair */

/* ---
Setup Name/Value Pair for Transaction
NB: Because Transaction is a number, we set the flag so that this

value is NOT translated from EBCDIC to ASCII.
--- */

Allocate cytanval In(stgarea); /* Allocate storage */
tranaddr = cytanvalp; /* Save the address */
cytannam = Addr(tranlbl); /* Name */
cytanvl = Addr(trannam); /* Value */
cytannvx = ’1’B; /* Do NOT xlate Value */
cytanvll = 4; /* Value Length */
appladdr->cytannxt = tranaddr; /* Chain off Host Pair */

/* ---
Get our Configuration Token
--- */

Allocate cytacfg In(stgarea); /* Allocate stg for cfg block */
cytacsrv = Addr(server); /* Server */
Call CYTA_init(cytacfg);
Display (’(CYTAPSMP) CYTAINIT Return Code=’ || PLIRETV());

/* ---
Send a Started Event
--- */

Allocate cytaevnt In(stgarea); /* Allocate storage for event */
cytaetyp = cytaesta; /* Started Event Type */
cytaevli = Addr(vlink); /* Vertical Link ID */
cytaevll = Length(vlink); /* Vertical Link Length */
cytaevcn = hostaddr; /* Vertical Context Start */
Call CYTA_track(cytacfg, cytaevnt);
Display (’(CYTAPSMP) STARTED Event Return Code=’ || PLIRETV());

/* ---
Send an Outbound Event
(we only need to specify changed fields - all other fields remain
from the Started event)
--- */

cytaetyp = cytaeob; /* Oubound Event Type */
cytaehli = Addr(hlinkout); /* Horizontal Link ID */
cytaehll = Length(hlinkout); /* Horizontal Link Length */
Call CYTA_track(cytacfg, cytaevnt);
Display (’(CYTAPSMP) OUTBOUND Event Return Code=’ || PLIRETV());

/* ---
Send an Inbound Finished Event
--- */

cytaetyp = cytaeibf; /* Oubound Event Type */
cytaehli = Addr(hlinkin); /* Horizontal Link ID */
cytaehll = 4; /* Horizontal Link Length */
cytaehnx = ’1’b; /* Link ID is a number, so do */

/* NOT translate from EBCDIC. */
Call CYTA_track(cytacfg, cytaevnt);
Display (’(CYTAPSMP) INBOUND FINISHED Event Return Code=’ ||

PLIRETV());

/* ---
Free up our storage
--- */

stgarea = Empty(); /* Free all storage */

End CYTAPSMP;

78 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

HLASM
===
* Main Program
===
CYTAASM RSECT
CYTAASM AMODE 31
CYTAASM RMODE ANY

BAKR R14,0
LR R12,R15
USING CYTAASM,R12

* Setup workarea

STORAGE OBTAIN,LENGTH=@WORKL,ADDR=(R1)
ST R1,8(R13) New savearea ptr back to caller
ST R13,4(R1) Old save area ptr in new
LR R13,R1
USING WORK,R13
MVC SAVEAREA+4,=C’F1SA’ Show we are using linkage stack

* Setup Vertical Context
* Your event needs some basic values here, so we use the CYTADFV
* to fill them in. We chain these values of our own IDNum entry.
* Note that IDNum is a number, so we don’t translate it from EBCDIC
* to ASCII before sending it down.

LA R1,#IDNUM
CYTANV NAME=’IDNum’,VALUE=(R1),LEN=#IDNUML,XLATEV=NO, x

MF=(E,NAMVALV1)
CYTADFV TXN=’CYTAASM’,CHAINTO=NAMVALV1,MF=(E,NAMVALVC)

* Get a Configuration Token - we will use the subsystem CYTZ. *

CYTAINIT SUB=’CYTZ’ Get Token
LTR R15,R15 If successful
BNZ LEAVEX
ST R1,TTOKEN Save it

* Always start with a STARTED Event
* The Vertical Link should be the same for all events in this work
* unit until a FINISHED event is sent.
* Set the entire event block to zeroes before filling it in.

XC EVENTBLK(@EVENTBLK),EVENTBLK
CYTATRAK STARTED, X

VCTXT=NAMVALV1, X
TOKEN=TTOKEN, X
VLINK=’CYTAASM’, X
MF=(E,EVENTBLK)

LTR R15,R15 If not successful
BNZ LEAVEX Exit

* Send an Outbound Event - this indicates that we’ve sent something
* to someone else.
* Remember we need a Horizontal Link and/or a Horizontal Stitch
* here - and the program on the other end also needs to specify the
* same link/stitch on their Inbound event.
* Remember also that this event remembers all the values from the
* previous CYTATRAK call. So we only need to specify the Event Type,
* and the values we are overriding (in this case, HLINK).

CYTATRAK OUTBOUND,HLINK=’CYTAOUT’,TOKEN=TTOKEN,MF=(E,EVENTBLK)

Appendix C. Samples 79

LTR R15,R15 If not successful
BNZ LEAVEX Exit

* (often a program would wait here for something to come back)

* Send an Inbound Finished Event - this is two events (Inbound and
* Finished) rolled into one.
* We also need a Horizontal Link and/or a Horizontal Stitch here, but
* not the one we sent - the one that the program at the other end has
* specified.
* Remember that we also finish with a FINISHED event.

CYTATRAK INBOUND_FIN,HLINK=’CYTABACK’,TOKEN=TTOKEN, X
MF=(E,EVENTBLK)

LTR R15,R15 If not successful
BNZ LEAVEX Exit

* Return to Caller

LEAVE DS 0H

LR R4,R15 Save return code
STORAGE RELEASE,LENGTH=@WORKL,ADDR=(R13) Release workarea
LR R15,R4
PR Return to caller

* Error Routine - Error occurred. Exit with return code

LEAVEX DS 0H

B LEAVE

*==
*
* PROGRAM CONSTANTS AND LITERALS
*
*==
#IDNUM DC F’45’
#IDNUML DC AL2(L’#IDNUM)

LTORG

*==
*
* Mapping Macros and DSECTs
*
*==

* Workarea

WORK DSECT
SAVEAREA DS 18F Savearea
STCKTIME DS D STCK Timestamp

TTOKEN DS F Fullword for Config Token
NAMVALVC CYTADFV MF=L Vertical Ctxt Nam/Val Pairs
NAMVALV1 CYTANV MF=L Extra Vert Context Nam/Val pair
EVENTBLK CYTATRAK MF=L Event Block
@EVENTBLK EQU *-EVENTBLK Length of Event Block

@WORKL EQU *-WORK Length of Workarea

* Register Equates

80 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END

Appendix C. Samples 81

82 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Appendix D. The kto_stitching file

The kto_stitching.xml file defines how horizontal and vertical stitching occurs for
events. It consists of definitions for Stitch Pairs.

See the following example of a CICS region and a Websphere MQ application
communicating with each other. A monitor in CICS and a monitor in Websphere
MQ both send Transactions events.

Application 1
(CICS)

Application 2
(WebSphere MQ)

For Transactions to be able to stitch the CICS and Websphere MQ events together,
it must know which Stitching name/value pairs must be matched. For example,
CICS and WebSphere® MQ may send a ServerName stitching name/value pair.
The Stitch Pair entry in kto_stitching.xml tells the Transaction Collector that a
CICS event (type 8) ServerName field must match a Websphere MQ event (type 5)
ServerName field for two events to be eligible for stitching. The kto_stitching.xml
file resides in the Transaction Collector directory.

Format

kto_stitching.xml is an XML file with the following format:
TTEMA Stitching

Stitch Criteria
StitchPair
StitchName

Stitch Priorities

TTEMA Stitching defines the beginning of Transactions stitching definitions. It has
no fields.

Stitch Criteria defines the beginning of a list of Stitch Pairs. It has no fields.

StitchPair defines global parameters for the Stitch Pair entry. It has the following
fields:

© Copyright IBM Corp. 2008, 2015 83

v Name – name of the Stitch Pair – can be any string.
v horizontal – true if this pattern is for matching horizontal stitches. Default:

false.
v vertical – true if this pattern is for matching vertical stitches. Default: false.
v reflective – true if this pattern is to be applied for messages sent both ways. If

false, then this Stitch Pair will only apply to events sent from the first caller to
the second caller. Default: false.

StitchNameList defines the beginning of a list of stitching pairs to be matched. It
has the following fields:
v caller – caller type for the following pairs. Must be a valid link type, that is, a

number between 0 and 255. See the Building and Event section for a list of link
types.

StitchName defines a pair to be matched. It has the following fields:
v name – the name of a stitching name/value pair. Remember that this is case

sensitive.

Example

The following is an example of a kto_stitching.xml file:

This example file defines how MQ Tracking and CICS Tracking events will be
stitched. In this example, all the fields in Table 14 must match fully for a stitch to
occur.

Table 14. Field matching

MQ Tracking CICS Tracking

ServerName ServerName

QMgrName qmgr

ObjName rslvdQueue

MsgId msgId

CorrelId corrId

PutDate putdate

84 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Table 14. Field matching (continued)

MQ Tracking CICS Tracking

PutTime puttime

Event flows in both directions (MQ to CICS and CICS to MQ) are covered by this
rule.

Appendix D. The kto_stitching file 85

86 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Appendix E. Transaction Collector Context Mask

The Transaction Collector performs aggregation of events based on context.

For example, all events must specify the ServerName in the vertical context. The
Transaction Collector aggregates all events by ServerName, and this is displayed in
the Transactions workspaces.

The contexts that the collectors aggregate are specified in a Context Mask file. This
file is a text file that resides in the Transaction Collector directory. The format of
this file is as follows:
Comments begin in column 1. Do not use blank spaces.
Don’t leave blank lines
#
Use the Compare statement to tell the Transactions Collector to # aggregate.
On the line following, specify the name of the context to aggregate on.
Finish the statement with a * in column 1.
For example:
new mask
compare
ApplicationName
*
The above statement tells Transactions Collector to
aggregate on ApplicationName context values. You
cannot use wildcards – specify the complete context
name.
#
You can also use the ignore statement. This tells the
Transactions Collector not to aggregate. For example:
ignore
UserID
*
The above statement tells the Transactions Collector NOT
to aggregate on UserID.
This is the default – all context values are ignored
unless specified in a compare statement.

Specify the name of the Context Mask file during installation of the Transaction
Collector, and if reconfigured, in the Transaction Collector Configuration dialog
box.

© Copyright IBM Corp. 2008, 2015 87

In Figure 4, the Context Mask file name and location is C:\IBM\ITM\TMAITM6\
contextmask_default.cfg. This is the default Context Mask supplied with
Transaction Tracking. More than one file can be specified in the Context Mask
Files field: separate each file name with a semi-colon (;).

Figure 4. Transaction Collector Configuration dialog box

88 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Appendix F. Accessibility

Accessibility features help users with physical disabilities, such as restricted
mobility or limited vision, to use software products successfully.

The major accessibility features in this product enable users to do the following:
v Use assistive technologies, such as screen-reader software and digital speech

synthesizer, to hear what is displayed on the screen. Consult the product
documentation of the assistive technology for details on using those technologies
with this product.

v Operate specific or equivalent features using only the keyboard.
v Magnify what is displayed on the screen.

In addition, the product documentation was modified to include the following
features to aid accessibility:
v All documentation is available in both HTML and convertible PDF formats to

give the maximum opportunity for users to apply screen-reader software.
v All images in the documentation are provided with alternative text so that users

with vision impairments can understand the contents of the images.

Navigating the interface using the keyboard

Standard shortcut and accelerator keys are used by the product and are
documented by the operating system. See the documentation provided by your
operating system for more information.

Magnifying what is displayed on the screen

You can enlarge information on the product windows using facilities provided by
the operating systems on which the product is run. For example, in a Microsoft
Windows environment, you can lower the resolution of the screen to enlarge the
font sizes of the text on the screen. See the documentation provided by your
operating system for more information.

© Copyright IBM Corp. 2008, 2015 89

90 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2008, 2015 91

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

92 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices 93

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

94 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Glossary

agent Software installed to monitor systems.
The agent collects data about an operating
system, a subsystem, or an application.

agent group
A group of management agents that run
the same policy or policies. Each
management agent is associated with one
or more listening and playback
components.

agentless
A method a data collection where data is
collected from traffic on networks
monitored by Web Response Time rather
than a domain-specific agent or Data
Collector plug-in.

aggregate
(1) An average of all response times
detected by the monitoring software over
a specific time period. (2) In Transaction
Tracking, a node in a transaction
topology.

aggregate record
A summary of instance data from all
transactions that match a defined pattern.

aggregate topology
A transaction topology that displays all
known and implied transactions which
may not all be related. See also instance
topology.

Aggregation agent
An agent that stores the tracking data
from more than one Data Collector
plug-in and other monitors and computes
aggregates for use by the Transaction
Reporter. The Transaction Collector and
Web Response Time agent are examples of
a Aggregation agent.

aggregation period
The time period, measured in minutes,
over which monitoring occurs.

alert A message or other indication that signals
an event or an impending event.

application
One or more computer programs or
software components that provide a
function in direct support of a specific
business process or processes.

application pattern
A rule that determines what transactions
to monitor and how to group them.

arithmetic expression
A statement that contains values joined
together by one or more arithmetic
operators and that is processed as a single
numeric value. See also arithmetic
operator.

arithmetic operator
A symbol, such as + or -, that represents a
fundamental mathematical operation. See
also arithmetic expression.

ARM-instrumented application
An application in which ARM calls are
added to the source code to enable the
performance of the application to be
monitored by management systems.

attribute
The application properties that are
measured and reported on, such as the
amount of memory used or a message ID.
See also attribute groups.

attribute group
A set of related attributes that can be
combined in a data view or a situation.

availability
The successful execution of a monitored
transaction over a specified period of
time.

client A software program or computer that
requests services from a server.

client pattern
A method to define which clients to
monitor, and how to group them for
reporting.

client time
The time it takes to process and display a
web page in a browser.

condition
A test of a situation or state that must be
in place for a specific action to occur.

configuration
The manner in which the hardware and
software of an information processing
system are organized and interconnected.

© Copyright IBM Corp. 2008, 2015 95

context
The means used to group tracking data as
part of a transaction flow.

Data Collector plug-in
The monitoring component that records
the transaction data.

data interval
A time period in minutes for the
summary data record. See also summary
data.

data source
An application, server, transaction, or
other process from which raw data is
gathered.

domain
A part of a network that is administered
as a unit with a common protocol.

down time
See mean time to recovery.

edge

In transaction monitoring, the point at
which a transaction first comes in contact
with the monitoring instrumentation.

event An occurrence of significance to a task or
system. Events can include completion or
failure of an operation, a user action, or
the change in state of a process. See also
situation.

failure
An individual instance of a transaction
that did not complete correctly. See also
incident.

firewall
A network configuration, typically both
hardware and software, that prevents
unauthorized traffic into and out of a
secure network.

horizontal
Pertaining to data that is tracked between
applications in a domain. See also
vertical.

horizontal context
A method of identifying a transaction
flow within a transaction which is used to
group interactions based on the
application supplying the tracking data.

host A computer that is connected to a
network and that provides an access point

to that network. The host can be a client,
a server, or both a client and a server
simultaneously.

hot spot
A graphical device used in topologies to
highlight the part of an end-to-end
transaction that has crossed specified
thresholds and has a significant
transaction time deviation.

incident
A failure or set of consecutive failures
over a period of time without any
successful transactions. An incident
concerns a period of time when the
service was unavailable, down, or not
functioning as expected.

instance
A single transaction or subtransaction.

implied node
A node that is assumed to exist and is
therefore drawn in the Transaction
Tracking topology. An implied node is
created when an aggregate collected in an
earlier aggregation period is not collected
for the current aggregation period.

instance algorithm
A process used by the Transaction
Reporter to track composite applications
with multiple instances.

instance topology
A transaction topology that displays a
specific instance of a single transaction.
See also aggregate topology.

interval
The number of seconds that have elapsed
between one sample and the next.

linking
In Transaction Tracking, the process of
tracking transactions within the same
domain or from data collector plugins of
the same type.

load time
The time elapsed between the user's
request and completion of the web page
download.

managed system
A system that is being controlled by a
given system management application.

Management Information Base
(1) In the Simple Network Management

96 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Protocol (SNMP), a database of objects
that can be queried or set by a network
management system. (2) A definition for
management information that specifies
the information available from a host or
gateway and the operations allowed.

mean time between failures
The average time in seconds between the
recovery of one incident and the
occurrence of the next one.

mean time to recovery
The average number of seconds between
an incident and service recovery.

metric A measurement type. Each resource that
can be monitored for performance,
availability, reliability, and other attributes
has one or more metrics about which data
can be collected. Sample metrics include
the amount of RAM on a PC, the number
of help desk calls made by a customer,
and the mean time to failure for a
hardware device.

metrics aggregation
A process used by the Transaction
Collector to summarize tracking data
using vertical linking and stitching to
associate items for a particular transaction
instance. Metrics aggregation ensures that
all appropriate tracking data is
aggregated.

MIB See Management Information Base.

monitor
An entity that performs measurements to
collect data pertaining to the performance,
availability, reliability, or other attributes
of applications or the systems on which
the applications rely. These measurements
can be compared to predefined
thresholds. If a threshold is exceeded,
administrators can be notified, or
predefined automated responses can be
performed.

monitoring agent
See agent.

monitoring schedule
A schedule that determines on which
days and at what times the monitors
collect data.

MTBF See mean time between failures.

MTTR
See mean time to recovery.

network time
Time spent transmitting all required data
through the network.

node A point in a transaction topology that
represents an application, component, or
server whose transaction interactions are
tracked and aggregated by Transaction
Tracking.

over time interval
The number of minutes the software
aggregates data before writing out a data
point.

parameter
A value or reference passed to a function,
command, or program that serves as
input or controls actions. The value is
supplied by a user or by another program
or process.

pattern
A process used to group data into
manageable pieces.

platform
The combination of an operating system
and hardware that makes up the
operating environment in which a
program runs.

predefined workspace
A workspace that is included in the
software which is optimized to show
specific aspects of the collected data, such
as agentless data.

probe A monitor that tests a transaction and
then detects and reports any errors that
were generated during that test.

profile element
An element or monitoring task belonging
to a user profile. The profile element
defines what is to be monitored and
when.

pseudo node
A node that represents an untracked part
of a transaction where information about
a remote node is provided by a Data
Collector plug-in, but that remote node is
not itself tracked.

query In a Tivoli environment, a combination of
statements that are used to search the
configuration repository for systems that
meet certain criteria.

Glossary 97

regular expression
A set of characters, meta characters, and
operators that define a string or group of
strings in a search pattern.

reporting rule
A rule that the software uses for naming
the collected data that is displayed in the
workspaces.

request
See transaction.

response time
The elapsed time between entering an
inquiry or request and receiving a
response.

round-trip response time
The time it takes to complete the entire
page request. Round-trip time includes
server time, client, network, and data
transfer time.

robotic script
A recording of a typical customer
transaction that collects performance data
which helps determine whether a
transaction is performing as expected and
exposes problem areas of the web and
application environment.

SAF See Store and Forward.

sample
The data that the product collects for the
server.

schedule
A planned process that determines how
frequently a situation runs with
user-defined start times, stop times, and
parameters.

SDK Software Development Kit.

server A software program or a computer that
provides services to other software
programs or other computers.

server time
The time it takes for a web server to
receive a requested transaction, process it,
and respond to it.

service
A set of business processes (such as web
transactions) that represent
business-critical functions that are made
available over the internet.

service level agreement
A contract between a customer and a
service provider that specifies the
expectations for the level of service with
respect to availability, performance, and
other measurable objectives.

service level classification
A rule that is used by a monitor to
evaluate how well a monitored service is
performing. The results form the basis for
service level agreements (SLAs).

service recovery
The time it takes for the service to recover
from being in a failed state.

situation
A set of conditions that, when met, create
an event.

SLA See service level agreement.

status The state of a transaction at a particular
point in time, such as whether it failed,
was successful, or slow.

stitching
The process of tracking transactions
between domains or from different types
of data collector plugins.

store and forward
The temporary storing of packets,
messages, or frames in a data network
before they are retransmitted toward their
destination.

subtransaction
An individual step (such as a single page
request or logging on to a web
application) in the overall recorded
transaction.

summary data
Details about the response times and
volume history, as well as total times and
counts of successful transactions for the
whole application.

summary interval
The number of hours that data is stored
on the agent for display in the Tivoli Data
Warehouse workspaces.

summary status
An amount of time in which to collect
data on the Tivoli Enterprise Management
Agent.

threshold
A customizable value for defining the

98 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

acceptable tolerance limits (maximum,
minimum, or reference limit) for a
transaction, application resource, or
system resource. When the measured
value of the resource is greater than the
maximum value, less than the minimum
value, or equal to the reference value, an
exception or event is raised.

tracking data
Information emitted by composite
applications when a transaction instance
occurs.

transaction
An exchange between two programs that
carries out an action or produces a result.
An example is the entry of a customer's
deposit and the update of the customer's
balance.

transaction definition
A set of filters and maintenance schedules
created in the Application Management
Configuration Editor which are applied to
the collected data and determine how that
data is processed and displayed.

transaction flow
The common path through a composite
application taken by similar transaction
instances.

transaction interaction
See transaction.

transaction pattern
The pattern for specifying the name of
specific transactions to monitor. Patterns
define groupings of transactions that map
to business applications and business
transactions.

trend A series of related measurements that
indicates a defined direction or a
predictable future result.

uptime
See Mean Time Between Failure.

user profile
For Internet Service Monitoring, an entity
such as a department or customer for
whom services are being performed.

vertical
Pertaining to data that is tracked within
the same application and domain. See
also horizontal.

vertical context
The method used to distinguish one
transaction flow from another within an
application or group of applications. The
vertical context enables Transaction
Tracking to group individual transactions
as part of a flow, label a node in a
topology map, and link to an IBM® Tivoli
Monitoring application.

view A logical table that is based on data
stored in an underlying set of tables. The
data returned by a view is determined by
a SELECT statement that is run on the
underlying tables.

workspace
In Tivoli management applications, the
working area of the user interface,
excluding the Navigator pane, that
displays one or more views pertaining to
a particular activity. Predefined
workspaces are provided with each Tivoli
application, and systems administrators
can create customized workspaces.

Glossary 99

100 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

Index

Special characters
.NET bindings

Transaction Tracking API 37

A
accessibility 89
aggregation 15
API

Web Response Time 39, 41, 45
applications, instrumenting 9
association IDs 12

B
books, see publications ix, x

C
context mask, Transaction Collector 87
conventions, typeface xii
creating events 4
CYTADFV 28
CYTAINIT 30
CYTANV 31
CYTATOK 33
CYTATRAK 33

D
data processing

Web Response Time Module API 41
debugging errors 8
detecting errors 7
directory names, notation xii

E
environment variables 8

notation xii
environment, preparing to install 3
errors

debugging 8
handling 7
logging 8

event aggregation 87
event data

z/OS 18
events

characteristics 9
correlation 15
creating and sending 4
invalid 7
types 10

F
FINISHED event type 10

G
Generic TCP Decoder 39, 48

See files
FTP protocol example 57

Generic TCP Module
actions on rules 56
built in rules 56
choice rules 53
meta rules 54
rules 48, 50
sequence rules 52
terminal values 49

glossary 95

H
HERE event type 10
HLASM 28
horizontal linking 12

I
IBM Support Assistant xi

Lite xi
Log Analyzer xi

identifiers
instance 15
uniqueness 12

INBOUND event type 10
INBOUND_FINISHED event type 10
include files 5
instrumenting

applications 9
synchronous transactions 11

introduction 1
ISA

See IBM Support Assistant

J
Java API reference 28
Javadoc for TTAPI4J 28

K
KBB_RAS1 environment variable 8
KBB_RAS1_LOG environment

variable 8
KBB_VARPREFIX environment

variable 8

L
languages, supported 3
linking IDs 12
Log Analyzer xi
logging

environment variables 8

logging (continued)
errors 8

M
manuals, see publications ix, x
module management

Web Response Time Module API 39

N
notation

environment variables xii
path names xii
typeface xii

O
online publications, accessing x
ordering publications x
OUTBOUND event type 10
OUTBOUND_FINISHED event type 10

P
path names, notation xii
platforms, supported 3
preparing environment 3
program requirements 5
publications ix

accessing online x
ordering x

S
sample

CYTADFV 28
CYTAINIT 30
CYTANV 31
CYTATOK 33
CYTATRAK 33

sending events 4
shutting down Transaction Tracking

API 4
STARTED event type 10
STARTED_INBOUND event type 10
stitching IDs 12
support xi
supported

languages 3
platforms 3

T
Tivoli software information center x
transaction

data 15
ID 15

© Copyright IBM Corp. 2008, 2015 101

transaction (continued)
synchronous 11

Transaction Collector
context mask 87

Transaction Tracking
context information 15
functions 19

Transaction Tracking API
.NET bindings 37
blocking events 17
blocking events example 18
C types and structures 23
compiling 6
executing 6
high level language reference 19
linking 6

typeface conventions xii

V
variables, notation for xii
vertical stitching 12

W
Web Response Time

API module 39, 45
data processing 41
module management 39

Generic TCP Module, actions on
rules 56

Generic TCP Module, built in
rules 56

Generic TCP Module, choice rules 53
Generic TCP Module, meta rules 54
Generic TCP Module, rules 48, 50
Generic TCP Module, sequence

rules 52
Generic TCP Module, terminal

values 49

Z
z/OS

event data 18

102 IBM Tivoli Composite Application Manager for Transactions: SDK Guide

IBM®

Printed in USA

SC14-7410-03

	Contents
	Figures
	Tables
	About this publication
	Publications
	Documentation library
	Prerequisite publications
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this guide
	Typeface conventions
	Operating system-dependent variables and paths

	Chapter 1. Introduction
	Chapter 2. Transaction Tracking API
	Before you start
	Preparing your environment
	Getting started
	Introduction
	Program requirements and include files
	Compiling, linking, and executing with Transaction Tracking API
	Error handling
	Error logging and debugging

	How to build an event
	Event types
	Event type examples

	Linking and stitching
	Transaction Instance IDs
	Context information
	Blocking events
	Example: blocking events

	Platform-specific issues

	High Level Language reference
	Functions
	C types and structures

	Java reference
	High Level Assembler Reference
	HLASM Macro: CYTADFV
	HLASM Macro: CYTAINIT
	HLASM Macro: CYTANV
	HLASM Macro: CYTATOK
	HLASM Macro: CYTATRAK

	.NET bindings for Transaction Tracking API

	Chapter 3. Generic TCP Decoder
	Web Response Time Module API
	Module management
	Data processing

	Generic TCP Module
	Generic TCP Decoder
	Generic TCP Decoder rules
	Terminal values
	Repetition rules
	Sequence rules
	Choice rules
	Meta rules
	Built in rules

	Example - decoding FTP protocol

	Appendix A. Transport address format
	Appendix B. Return codes
	Appendix C. Samples
	Appendix D. The kto_stitching file
	Appendix E. Transaction Collector Context Mask
	Appendix F. Accessibility
	Notices
	Trademarks
	Privacy policy considerations

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	S
	T
	V
	W
	Z

